

KIRLOSKAR BROTHERS LIMITED

Established 1888 A Kirloskar Group Company

A HISTORY OF EXCELLENCE

Kirloskar Brothers Limited is a world-class pump manufacturing company with experience in engineering and manufacture of systems for fluid management. Established in 1888 and incorporated in 1920, KBL is the flagship company of the \$2.1 billion Kirloskar Group. The market leader in fluid management, KBL provides complete fluid management solutions for large infrastructure projects in the areas of water supply, power plants, irrigation, oil & gas and marine & defence.

KBL's commitment to quality and sustainability is as reliable as its products. This is why all plants of KBL are ISO 9001 & ISO 14001, OHSAS 18001, ISO 14000 Environment Standard Certified. The plants apply Total Quality Management tools using European foundation for Quality Management (EFQM) model.

As one of the largest pump manufacturers in India, KBL offers over 75 types of pumps in over 500 variants with up to 1,200 metre head and discharge of up to 120,000 cubic metres per hour. These pumps ensure the lowest life cycle cost; it is because KBL pumps offer maximum reliability under all operating conditions, ensuring trouble-free operations at all times and eliminating costly downtime. Additionally, KBL pumps are constructed with materials that offer the best resistance to corrosion and abrasion, enhancing performance for years together.

Technological innovations employed in pump engineering also reduces overall energy use, enhancing efficiency and cost saving.

Monobloc Pumps - Three Phase

Vacuum Pumps

Self Priming Pumps

SP COUPLED SET Energy Efficient Pumpset with IE4 MOTOR

SP COUPLED SET
Energy Efficient Pumpset with IE2 MOTOR

SP MONOBLOC

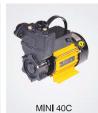
SP BARESHAFT

INDUSTRIAL RANGE PUMPS

Vertical Multi Stage / Inline Pumps

SS - Monobloc Pumps

Monobloc Pumps - Single Phase



DOMESTIC RANGE PUMPS

Mini Series Self Priming Pumps

Mini Series Self Priming Pumps - Ultra Series

Mini Series Self Priming Pumps

Mini Series Self Priming Pumps - Jal Series

JALHASTI

JALTARA

JALHANSA

JALSENA

JALNAYAK

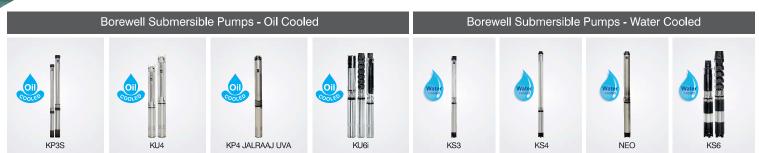
Self Priming Pumps

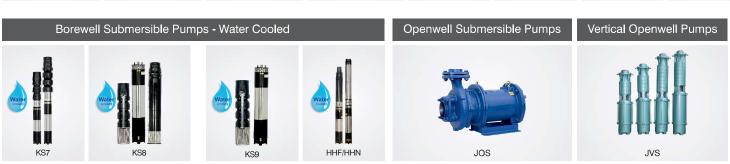
AQUA KNIGHT

V-FLOW

AQUA TORRENT-10FCL

CMS N



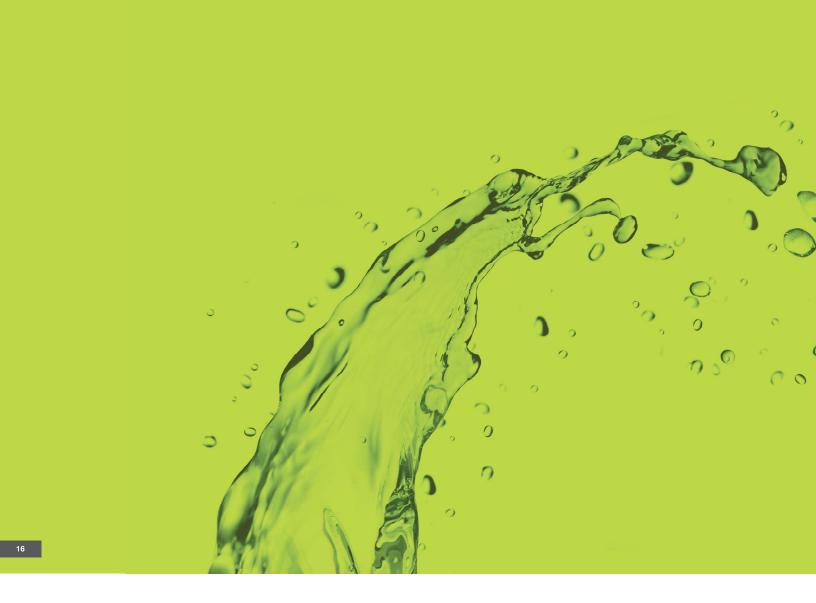

DOMESTIC RANGE PUMPS

Jet Pump Shallow Well Pumps Openwell Submersible Pumps - Single Phase KJ KSW LIFTER KOSi KOSi C

End-Suction Pumps

PRODUCT	Page No.	PRODUCT	Page No.
INDUSTRIAL RANGE PUM	IPS	VACUUM PUMPS	
MONOBLOC PUMPS - THREE PHASE		KV/DV	53
KDI EE5 MONOBLOC	18	VERTICAL MULTI STAGE	INLINE PUMPS
KDI EE4 MONOBLOC	20	KVM	57
KDI EE2 MONOBLOC	22	KCIL/KSIL	59
KDI	24	STAINLESS STEEL MONO	BLOC PUMPS
KDS / GMC	26	AGNES	75
KDT	29	KSMB	78
KS		SEWAGE / DEWATERING	PUMPS
SRF		ETERNA CW+/CW	81
		CWC	83
OPENWELL SUBMERSIBLE PUMPS PHASE	S - THREE	SW / BW	85
KOSM	37	SWIMMING POOL PUMP	
KOS	39	KPP	87
SELF PRIMING PUMPS			
SP COUPLED SET with IE5 MOTO	OR43		
SP COUPLED SET with IE4 MOTO	OR45		
SP/SPM/SP COUPLED	47		

PRODUCT	Page No.	PRODUCT	Page No.
AGRICULTURE RANGE PUMPS MONOBLOC PUMPS - SINGLE PHASE KDS KAM DC / HASTI / PAMBA PUZHA	91	AARNA, ANAYA, RIAN JALDAKSH JALHASTI JALTARA JALHANSA	Page No.
MINI SERIES SELF PRIMING PUMPS CHHOTU MINI 30C MINI 40C/MINI 40C ES MINI 50C JALRAAJ ULTRA CHHOTU STAR ULTRA	101101101	AQUA KNIGHTV FLOWAQUA TORRENT-10FCL	


PRODUCT	Page No.	PRODUCT	Page No.
DOMESTIC RANGE PUMPS		SUBMERSIBLE	PUMPSETS
SHALLOW WELL PUMPS		BOREWELL SUBMERSIBI	LE PUMPS
KSW / LIFTER	117	OIL COOLED	
OPENWELL SUBMERSIBLE PUMPS		KP3S	137
KOSi	121	KU4	139
KOSi with Cl Body	123	KP4 JALRAAJ UVA	143
		KU6i	145
PRESSURE BOOSTING SYSTEM		BOREWELL SUBMERSIBI	LE PUMPS
CPBS	127	WATER COOLED	
K-BOOSTER	129	KS3	150
STAR GALAXY	131	KS4	152
HL PUMP		NEO	158
HI - LIFTER	133		

SUBMERSIBLE PUMPSETS BOREWELL SUBMERSIBLE PUMPS WATER COOLED END SUCTION PUMPS KS6	PRODUCT	Page No.	PRODUCT	Page No.
WATER COOLED NW/NWD	SUBMERSIBLE PUMPSETS		OTHER PROI	DUCTS
KS9	BOREWELL SUBMERSIBLE PUMPS WATER COOLED KS6	166 170 175 177	NW/NWDKEKHKHDT	

Note

Information and declarations mentioned in this document or on nameplate are at standard test conditions and as a part of continual improvements, specifications are subject to change without prior notice. Images shown in the catalogue are for illustration purpose only. Actual product may vary.

INDUSTRIAL PRODUCT RANGE

MONOBLOC PUMPS THREE PHASE

17

KDI - EE5

ENERGY EFFICIENT MONOBLOC PUMP WITH ULTRA PREMIUM EFFICIENCY IE5 MOTOR

Seal with HNBR which can Handle fluid up to 120°C

FEATURES

Ultra Premium Efficiency

Lower life cycle cost with lower operating cost.

Higher Specific Discharge (discharge rate per unit power)

Up to 16.6 % less energy consumption for pumping same amount of fluid.

High grade F-Class insulation with Temperature rise limited to B-Class

Robust design to withstand higher temperatures reducing the chances of motor burning and ensures the reliability, safety and enhanced life.

High Efficiencies Achieved with AC Induction Motor Design

Rugged and most suited to work under varied field conditions. Easy to operate, maintain and service at local levels as there is no use of permanent magnets/added accessories/control equipment.

Cathodic Electro Deposition (CED) Coating

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All Hydraulic parts of Kirloskar pumps are CED coated.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Superior Mechanical Seal

Superior quality of mechanical seal ensures zero leakage, lower friction loss, protects from wearing of shaft, thus resulting in easy maintenance and longer life. With Carbon Vs Ceramic mechanical seal and HNBR it can handle fluid up 120°C.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which provides ease of maintenance thereby extending the life of the pump.

Optimum Fan and Fan Cover Design

Designed for optimum cooling with minimum power consumption and quiet operation.

For selected models

TECHNICAL SPECIFICATION

Head Range - Up to 54 Meters Discharge Range - Up to 33 LPS

Power Rating - 1.1 - 3.7 kW (1.5 - 5.0 HP)
Voltage Range - 350 to 440 Volts

Insulation - F Class
Protection - IP55

MATERIAL OF CONSTRUCTION

 Impeller
 - Cast Iron

 Delivery Casing
 - Cast Iron

 Motor Body
 - Cast Iron

 Pump Shaft
 - Stainless Steel

 Sealing
 - Mechanical Seal

(Carbon vs Ceramic with HNBR which can withstand fluid temperature up to 120°C)

- Air conditioning and refrigeration system
- Cooling towers
- Fire fighting
- Water supply
- Clear water handling at high pressure in industries
- Clear water handling in ETP/STP Plants
- Handling hot water in par boiled rice making machines Hot water handling at High Pressure in Industries

			PERF	ORMAN		RT FOR KD) Hz FREQI									ATED \	/OLTA	GE,						
		Dower	Rating	Pipe	Size	Rated							тот	AL HE	AD IN	MET	RES						
S. No.	PUMP MODEL	Power	nating	(m	ım)	Voltage	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38
		kW	HP	SUC.	DEL.	(Volts)						DISC	HARC	SE IN	LITRE	S PEI	R SEC	COND					
1	KDI - 1.514 EE5	1,1	1,5	50	50	415	-	8.5	7.1	5.7	3.0	-	-	-	-	-	-	-	-	-	-	-	-
2	KDI - 1.522 EE5	1.1	1.5	50	40	415	-	6.3	5.9	5.5	5.0	4.5	3.9	3.1	1.8	-	ŀ	ı	ı	-	-		-
3	KDI - 1.525 EE5	1.1	1.5	50	40	415	2.6	2.55	2.5	2.45	2.4	2.3	2.2	2.1	2.0	1.8	1.6	•	ı	-	-	-	-
4	KDI - 1.540 EE5	1.1	1.5	32	25	415	-	-	-		•	-	-			2.7	2,5	2.3	2.0	1.65	1.2	0.75	-
5	KDI - 212 EE5	1,5	2.0	80	80	415	14.1	12.4	10.5	7.5	•	-	-	-	-	-	·	-	ŀ	-	-	-	•
6	KDI - 216 EE5	1.5	2.0	65	50	415	-	11.0	10.0	8.7	7.0	4.0	1	-	1		1	-	ı	-	1	-	-
7	KDI - 225 EE5	1.5	2.0	50	40	415	-	5.4	5.2	5.0	4.7	4.5	4.1	3.7	3.2	2.7	-	-	-	-	-	-	-
8	KDI - 235 EE5	1,5	2.0	50	40	415	-	-	4.1	4.0	3.9	3.7	3.5	3.4	3.2	3.0	2.7	2.4	2.0	1.3	-	-	-
9	KDI - 314 EE5	2,2	3.0	80	80	415	19,2	17.9	16.2	14.0	10.5	-	-	-	-	-	-	-	-	-	-	-	-
10	KDI - 318 EE5*	2.2	3.0	80	65	415	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-	-	-
11	KDI - 515 EE5	3.7	5.0	100	100	415	33.0	30.5	28.0	24.0	19.0	12.0	-	-	-	-	-	-	-	-	-	-	-
12	KDI - 520 EE5	3.7	5.0	80	80	415	-	23.4	22.0	20.8	19.5	18.0	16.0	13.2	10.0	-	-	-	-	-	-	-	-
13	KDI - 527 EE5	3.7	5.0	80	65	415	-	-	16.0	15.4	14.8	14.2	13.4	12.5	11.4	10.0	8.3	5.8		-	-	-	-
14	KDI - 538 EE5	3.7	5.0	65	50	415	9.0	8.9	8.85	8.8	8.7	8.6	8.55	8.45	8.35	8.25	8.1	7.9	7.6	7.1	6.6	6.0	5.1
							34	36	38	40	42	44	46	48	50	52	54	-	•	-	-	-	-
15	KDI - 550 EE5	3,7	5,0	50	40	415	5.6	5.5	5.3	5.1	4.8	4.5	4.1	3.7	3.2	2,6	1,5	-	-	-	-	-	- 1

- Note:

 * KDI-318 EE5 can also be offered with pipe size 65 x 50.

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

KDI - EE4

ENERGY EFFICIENT MONOBLOC PUMP WITH PREMIUM EFFICIENCY IE4 MOTOR

Seal with HNBR which can Handle fluid up to 120°C

FEATURES

Premium Efficiency IE4 Motor and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Superior Mechanical Seal

Superior quality of mechanical seal ensures zero leakage, lower friction loss, protects from wearing of shaft, thus resulting in easy maintenance and longer life. With Carbon Vs Ceramic mechanical seal and HNBR it can handle fluid up 120°C.

Cathodic Electro Deposition (CED) Coating

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All Hydraulic parts of Kirloskar pumps are CED coated.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which provides ease of maintenance thereby extending the life of the pump.

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Design to Prevent Overloading

Lesser chances of motor burning as motor did not get overloaded even if the pump is operated at a head lower than recommended and saving substantial cost from maintenance and breakdown

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

TECHNICAL SPECIFICATION

Head Range - Up to 80 Meters Discharge Range - Up to 39 LPS

Power Rating - 1.5 to 15 kW (2 to 20 HP) Voltage Range - 350 to 440 Volts (Three Phase)

Insulation - F Class Protection - IP55

MATERIAL OF CONSTRUCTION

Cast Iron/Gun Metal/Stainless Steel

Delivery Casing - Cast Iron Motor Body - Cast Iron Pump Shaft - Stainless Steel Sealing - Mechanical Seal

(Carbon vs Ceramic with HNBR which can withstand fluid temperature up to 120°C)

- Air conditioning and refrigeration system
- Cooling towers
- Fire fighting
- Water supply
- Clear water handling at high pressure in Industries Clear water handling in ETP/STP Plants
- Handling hot water in parboiled rice making machines
- Hot water handling at High Pressure in Industries

			PERF	ORMAN		ART FOR										T RA	TED V	OLTA	GE,					
						50 Hz FR	EQUE	INCY,	IHKE	E PH	ASE I	A.C. F	OWE											
		Power	Rating	Pipe Siz	ze (mm)	Rated									L HEAD									
S. No.	PUMP MODEL				. , ,	Voltage	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
		kW	HP	SUC.	DEL.	(Volts)							DISC	HARGE	IN LIT	RES P	ER SE	COND						
1	KDI - 216 EE4	1.5	2.0	65	50	415	-	11.0	10.0	8.7	7.0	4.0	-	-	-	-	-	-	-	-	-	-	-	-
2	KDI - 225 EE4	1.5	2.0	50	40	415	-	5.4	5.2	5.0	4.7	4.5	4.1	3.7	3.2	2.7	-	-	-	-	-	-	-	-
3	KDI - 235 EE4	1.5	2.0	50	40	415	-	-	4.1	4.0	3.9	3.7	3.5	3.4	3.2	3.0	2.7	2.4	2.0	1.3	-		-	-
4	KDI - 314 EE4	2.2	3.0	80	80	415	19.2	17.9	16.2	14.0	10.5	-	-	-	-	-	-	-	-	-	-	-	-	-
5	KDI - 318 EE4	2,2	3.0	80	65	415	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-		-	-	-	-	-
6	KDI - 318 EE4	2.2	3.0	65	50	415	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-	-	-	-
7	KDI - 335 EE4	2.2	3.0	50	40	415	-	-	-	5.05	4.9	4.8	4.6	4.5	4.35	4.2	4.0	3.8	3.5	3.2	2.7	2.0	-	-
8	KDI - 515 EE4	3.7	5.0	100	100	415	33.0	30.5	28.0	24.0	19.0	12.0	-	-	-	-	-	-	-	-	-	-	-	-
9	KDI - 520 EE4	3.7	5.0	80	80	415	-	23.4	22.0	20.8	19.5	18.0	16.0	13.2	10.0	-	-	-	-	-	-	-	-	-
10	KDI - 527 EE4 KDI - 538 EE4	3.7	5.0	80 65	65 50	415	9.0	-	16.0 8.85	15.4	14.8	14.2	13.4	12.5 8.45	11.4	10.0 8.25	8.3 8.1	5.8	-	-	-	-	-	-
11			5.0	100		415	9.0	8.90		8.8	8.7	8.6	8.55		8.35		8.1	7.9	7.6	7.1	6.6	6.0	5.1	4.0
12	KDI - 822 EE4 KDI - 830 EE4	5.5 5.5	7.5 7.5	80	100 65	415 415	-	29.4	28.1	26.7	25.4	23.9 19.0	22.1 18.2	20.0 17.3	17.7 16.4	14.0 15.4	14.2	12.7	11.1	-	-	-	-	-
14	KDI - 837 EE4	5.5	7.5	65	65	415	-	_	_	_	-	19.0	10.2	17.3	11.2	11.1	11.0	11.0	10.9	10.6	10.0	9.0	7.0	_
15	KDI - 1030 EE4	7.5	10.0	100	100	415	-	-	-	32.0	30.5	29.4	28.2	26.9	25.2	23.5	21.0	18.0	13.5	10.6	10.0	9.0	7.0	
16	KDI - 1040 EE4	7.5	10.0	80	65	415			23.5	23.0	22.5	22.0	21.5	20.9	20.3	19.5	18.7	17.9	17.0	15.8	14.6	13.3	11.0	9.0
17	KDI - 1331 EE4	9.3	12.5	100	100	415	-	-	37.5	36.5	35.5	34.5	33.4	32.0	30.5	28.5	26.5	23.8	19.8	12.0	14.0	10.0	-	9.0
18	KDI - 1537 EE4	11.0	15.0	100	100	415	-		39.0	38.5	38.0	37.2	36.5	35.5	34.5	33.0	31.6	30.0	27.8	25.0	22.0	17.5		
-10	KDI 1007 EE4	11.0	10.0	100	100	410	22	24	26	28	30	32	34	36	38	40	44	46	48	52	56	60	64	68
19	KDI - 550 EE4	3.7	5.0	50	40	415			-	-		-	-	-	5.0	4.8	4.1	3.7	3.2	1.6	-	-	-	-
20	KDI - 844 EE4	5.5	7.5	65	65	415	11.5	11.3	11.0	10.6	10.2	9.7	9.0	8.4	7.7	7.0	4.2	-	-	-		-	-	-
21	KDI - 1050 EE4	7.5	10.0	65	65	415	-	-	12.7	12.5	12.2	12.0	11.7	11.4	11.0	10.7	9.6	8.9	8.1	6.0	-		_	_
22	KDI - 1065 EE4	7.5	10.0	65	50	415	-	-	-	-	-	-	-	-	-	7.8	7.3	7.1	6.9	6.4	5.8	5.1	4.3	3.0
							14	16	20	22	24	28	30	32	34	36	38	40	42	44	46	48	52	54
23	KDI - 1348 EE4	9.3	12.5	80	65	415	-	-	19.5	19.2	18.8	18.1	17.6	17.2	16.6	15.9	15.1	14.3	13.2	11.9	10.2	6.5	-	-
24	KDI - 1555 EE4	11.0	15.0	80	65	415	-	-	-	19.75	19.7	19.5	19.4	19.2	18.8	18.5	18.0	17.4	16.7	16.0	15.0	14.2	12.2	10.5
25	KDI - 2050 EE4	15.0	20.0	100	80	415	35.0	34.2	33.0	32.2	31.7	30.1	29.5	28.8	28.0	27.0	26.0	25.0	24.0	22.5	21.0	19.4	13.5	-
							18	22	28	30	34	36	40	44	46	48	52	56	60	64	68	72	76	80
26	KDI - 1360 EE4	9.3	12.5	65	50	415	12.9	12.7	12.4	12.3	12.0	11.7	11.3	10.7	10.4	10.0	9.1	8.3	7.0	4.5	-	-	-	-
27	KDI - 1570 EE4	11.0	15.0	65	50	415	-	-	13.2	13.1	12.9	12.8	12.5	12.0	11.8	11.5	10.7	10.0	9.0	8.0	6.5	-	-	-
28	KDI - 1575 EE4	11.0	15.0	65	50	415	-	-	-	-	-	-	-	-	-	-	-	7.7	7.3	6.9	6.4	5.8	4.9	3.4

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

ENERGY EFFICIENT MONOBLOC PUMP WITH IE2 MOTOR EFFICIENCY

Seal with HNBR which can Handle fluid up to 120°C

FEATURES

High Efficiency IE2 Motor and Energy Saving Design Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Superior Mechanical Seal

Superior quality of mechanical seal ensures zero leakage, lower friction loss, protects from wearing of shaft, thus resulting in easy maintenance and longer life. With Carbon Vs Ceramic mechanical seal and HNBR it can handle fluid up to

Cathodic Electro Deposition (CED) Coating

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life, All Hydraulic parts of Kirloskar pumps are CED coated.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Replaceable Wearing Parts
All wearing parts within the pumps are easily accessible and replaceable which provides ease of maintenance thereby extending the life of the pump.

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Design to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Automatic Air Release
Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

TECHNICAL SPECIFICATION

Head Range - Up to 68 Meters Discharge Range - Up to 33 LPS

Power Rating - 1.5 to 7.5 kW(2 to 10 HP) Voltage Range 350 to 440 Volts(Three Phase)

- F Class Insulation Protection IP55

MATERIAL OF CONSTRUCTION

Impeller - Cast Iron Delivery Casing Cast Iron Motor Body Cast Iron Pump Shaft - Stainless Steel - Mechanical Seal Sealing

amic with HNBR which can withstand fluid temperature up to 120°C)

- Air conditioning and refrigeration system
- Cooling towers
- Fire fighting
- Water supply
- Clear water handling at high pressure in Industries
- Clear water handling in ETP/STP Plants
- Handling hot water in parboiled rice making machines
- Hot water handling at high pressure in Industries

			١	PERFOF	RMANCE	CHART F 50 Hz										T RAT	ED VO	DLTAG	iE,						
		Power	Datina	Dina Cir	(Rated								TC	TAL H	EAD IN	METR	ES							
S. No.	PUMP MODEL	Power	Hating	Pipe Siz	ze (mm)	Voltage	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	44
		kW	HP	SUC.	DEL.	(Volts)							DI	SCHAF	RGE IN	LITRE	S PER	SECO	ND						
1	KDI - 216 EE2	1.5	2.0	65	50	415	١	11.0	10.0	8.7	7.0	4.0	-	-	١	-	•	-	1		-	-		-	-
2	KDI - 225 EE2	1.5	2.0	50	40	415	-	5.4	5.2	5.0	4.7	4.5	4.1	3.7	3.2	2.7	-	-	1	-	1	-	-	-	-
3	KDI - 235 EE2	1.5	2.0	50	40	415	-	-	4.1	4.0	3.9	3.7	3.5	3.4	3.2	3.0	2.7	2.4	2.0	1.3	-	-	-	-	-
4	KDI - 314 EE2	2.2	3.0	80	80	415	19.2	17.9	16.2	14.0	10.5	-	_	-		-	-	_	- 1	-	-	-	-	_	-
5	KDI - 318 EE2	2.2	3.0	80	65	415		13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-		-	•	-	•	-	-	-	-
6	KDI - 318 EE2	2.2	3.0	65	50	415		13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	1	-	-	-	-	-	-
7	KDI - 325 EE2	2.2	3.0	65	50	415	١	١	9.2	8.8	8.4	7.9	7.4	7.0	6.4	5.8	4.9	-	1	-	-	-		-	-
8	KDI - 334 EE2	2.2	3	50	40	415	ŀ	ı	-	-	6.7	6.4	6.2	5.9	5.6	5.2	4.7	4.0	3.2	2.1	0.6	-	-	-	-
9	KDI - 515 EE2	3.7	5.0	100	100	415	33.0	30.5	28.0	24.0	19.0	12.0	-	-		-		-	-		-	-	-	-	-
10	KDI - 520 EE2	3.7	5.0	80	80	415	١	23.4	22.0	20.8	19.5	18.0	16.0	13.2	10.0	-	ı	-	ı	1	-	-	-	-	-
11	KDI - 527 EE2	3.7	5.0	80	65	415	1	1	16.0	15.4	14.8	14.2	13.4	12.5	11.4	10.0	8.3	5.8	1	1	1	-	-	-	-
12	KDI - 538 EE2	3.7	5.0	65	50	415	9.0	8.90	8.85	8.8	8.7	8.6	8.55	8.45	8.35	8.25	8.1	7.9	7.6	7.1	6.6	6.0	5.1	4.0	
13	KDI - 822 EE2	5.5	7.5	100	100	415	١	29.4	28.1	26.7	25.4	23.9	22.1	20.0	17.7	14.0	•	-	1			-		-	-
14	KDI - 830 EE2	5.5	7.5	80	65	415	1	1	1	-	1	19.0	18.2	17.3	16.4	15.4	14.2	12.7	11.1	1	1	4	-	-	-
15	KDI - 837 EE2	5.5	7.5	65	65	415	•	•	-		·		-	-	11.2	11.1	11.0	11.0	10.9	10.6	10.0	9.0	7.0	-	-
16	KDI - 844 EE2	5.5	7.5	65	65	415	•	-	-	-		-	_	_	11.5	11.3	11.0	10.6	10.2	9.7	9.0	8.4	7.7	7.0	4.2
17	KDI - 1030 EE2	7.5	10.0	100	100	415	•	1	-	31.0	30.5	29.4	28.2	26.9	25.2	23.5	21.0	18.0	13.5	-	•	-	-	-	-
18	KDI - 1040 EE2	7.5	10.0	80	65	415	-	-	23.5	23.0	22.5	22.0	21.5	20.9	20.3	19.5	18.7	17.9	17.0	15.8	14.6	13.3	11.0	9.0	-
							14	16	18	20	22	24	26	28	30	32	34	36	38	40	44	46	48	52	54
19	KDI - 550 EE2	3.7	5.0	50	40	415	-	-	-	-	-	-	-	-	-	-	-	-	4.7	4.5	3.85	3.45	3.0	1.6	-
20	KDI - 852 EE2	5.5	7.5	65	50	415	-	-	-	-	-	-	-	-	-	8.3	8.0	7.75	7.3	7.0	6.4	6.0	5.4	3.8	-
21	KDI - 1050 EE2	7.5	10.0	65	65	415	-	-	_	-	-		12.7	12.5	12.2	12.0	11.7	11.4	11.0	10.7	9.6	8.9	8.1	6.0	-
							18	22	26	28	30	32	34	36	40	44	46	48	52	56	60	64	68	72	76
22	KDI - 1065 EE2	7.5	10.0	65	50	415	-	-	-	-	-	-	-	-	7.8	7.3	7.1	6.9	6.4	5.8	5.1	4.3	3.0	-	-

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

Seal with HNBR which can Handle fluid up to 120°C

FEATURES

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Wide Voltage Design

The motor is designed to withstand wide voltage Variation from 350 to 440 volts and reduces motor burning in case of low/high voltage.

Designed to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

Mechanical Seal

Superior quality of mechanical seal ensures zero leakage, lower friction loss, protects from wearing of shaft, thus resulting in easy maintenance and longer life.

TECHNICAL SPECIFICATION

 Head Range
 - Up to 80 Metres

 Discharge Range
 - Up to 39 LPS

 Power Rating
 - 1.5 to 22 kW (2 to 30 HP)

 Voltage Range
 - 350 to 440 Volts (Three Phase)

 Insulation
 - F Class

Protection - IP55

MATERIAL OF CONSTRUCTION

Impeller - Cast Iron / Bronze / Stainless Steel
Delivery Casing - Cast Iron

Motor Body - Cast Iron
Pump Shaft - Stainless Steel
Sealing - Mechanical Seal

(Carbon vs Ceramic with HNBR which can withstand fluid temperature up to 120°C)

- · Air conditioning and refrigeration systems
- Cooling towers
- Clear water handling at high pressure in industries
- Irrigation in horticulture & agriculture
- Fire fighting systems

				PERF	ORMAN	ICE CHA												ED VO	OLTAC	GE,						
						50 I	Hz FR	EQU	ENCY	; THR	EE PI	HASE	A.C.	POW	ER SI	JPPĽ	′									
		Power	Rating	Pipe Siz	70 (mm)	Rated									TOTA	L HEAD	IN M	ETRES								
S. No.	PUMP MODEL	Fower	nating	ripe on	Le (IIIII)	Voltage	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44
		kW	HP	SUC.	DEL.	(Volts)								DISC	IARGE	IN LIT	RES P	ER SE	COND							
1	KDI - 216+	1.5	2.0	65	50	415	•	11.0	10.1	8.8	7.1	4.0		-	-	-	-	-	-	-	-	-	-	-	-	-
2	KDI - 225++	1.5	2.0	50	40	415	-	5.3	5.1	4.9	4.7	4.5	4.2	3.9	3.5	3.1	2.3	-	-	-	-	-	-	-	-	-
3	KDI - 235+	1.5	2.0	50	40	415	-	-	4.1	4.0	3.9	3.7	3.5	3.4	3.2	3.0	2.7	2.4	2.0	1.3	-	-	-	-	-	-
4	KDI - 314+	2.2	3.0	80	80	415	19.2	17.9	16.2	14.0	10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5	KDI - 318++	2.2	3.0	80	65	415	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-	-	-	-	-	-
6	KDI - 318++	2.2	3.0	65	50	415	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-	-	-	-	-	-
7	KDI - 325++	2.2	3.0	65	50	415	-	-	9.2	8.8	8.4	7.9	7.4	7.0	6.4	5.8	4.9	-	-	-	-	-	-	-	-	-
8	KDI - 335++	2.2	3.0	50	40	415	-	-	-	5.05	4.9	4.8	4.6	4.5	4.35	4.2	4.0	3.8	3.5	3.2	2.7	2.0	-	-	-	-
9	KDI - 515	3.7	5.0	100	100	415	33.0	30.5	28.0	24.0	19.0	12.0		-	-	-	-	-	-	-	-	-	-	-	-	-
10	KDI - 520+	3.7	5.0	80	80	415	-	23.0	22.0	20.8	19.5	17.9	16.0	14.0	11.0	-	-	-	-	-	-	-	-	-	-	-
-11	KDI - 527++	3.7	5.0	80	65	415	-	-	-	-	-	14.3	13.5	12.5	11.6	10.4	8.7	6.4	-	-	-	-	-	-	-	-
12	KDI - 538+	3.7	5.0	65	50	415	9.0	8.9	8.85	8.8	8.7	8.6	8.55	8.45	8.35	8.25	8.1	7.9	7.6	7.1	6.6	6.0	5.1	4.0	-	-
13	KDI - 822++	5.5	7.5	100	100	415	-	-	-	27.3	25.6	24.0	22.1	20.0	17.5	14.5	-	-	-	-	-	-	-	-	-	-
14	KDI - 830++	5.5	7.5	80	65	415	-	-	-	-	-	19.0	18.2	17.3	16.4	15.3	14.2	12.7	11.1	-	-	-	-	-	-	-
15	KDI - 837+	5.5	7.5	65	65	415	-	-	-	-	-	-	-	-	12.75	12.6	12.5	12.2	11.8	11.1	10.3	9.0	7.3	-	-	-
16	KDI - 844++	5.5	7.5	65	65	415	-	-	-	-	-	-	-	-	-	-	10.6	10.2	9.9	9.5	9.0	8.4	7.8	7.0	6.1	4.7
17	KDI - 1030+	7.5	10	100	100	415	-	·		32.0	31.0	29.7	28.3	27.0	25.2	23.5	21.0	18.0	13.5	•	•	•	•	•	-	-
18	KDI - 1040+	7.5	10	80	65	415	-	-	23.5	23.0	22.6	22.2	21.5	20.9	20.3	19.5	18.7	17.9	17.0	15.8	14.6	13.4	12.0	9.6	-	-
19	KDI - 1331+	9.3	12.5	100	100	415	٠	ŀ	37.5	36.5	35.5	34.5	33.4	32.0	30.5	28.5	26.5	23.8	19.8	12.0	·	١	٠	١	-	-
20	KDI - 1537+	11.0	15	100	100	415	i	ì	39.0	38.5	38.0	37.2	36.5	35.5	34.5	33.0	31.6	30.0	27.8	25.0	22.0	17.5	٠	ı	-	-
							14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	52	54
21	KDI - 550++	3.7	5	50	40	415	-	-	-	-	-	-	-	-	-	-	-	4.1	3.9	3.7	3.5	3.3	3.0	2.7	2.0	-
22	KDI - 852++	5.5	7.5	65	50	415	-	-	-	-	-	-	-	-	-	8.6	8.3	8.0	7.75	7.4	7.1	6.7	6.3	5.9	4.5	-
23	KDI - 1050+	7.5	10	65	65	415	-	-	-	-	-	-	12.7	12.5	12.2	12.0	11.7	11.4	11.0	10.7	10.2	9.6	8.9	8.1	6.0	-
24	KDI - 1348+	9.3	12.5	80	65	415	-	-	-	19.5	19.2	18.8	18.5	18.1	17.6	17.2	16.6	15.9	15.1	14.3	13.2	11.9	10.2	6.5	-	-
25	KDI - 1555+	11.0	15	80	65	415	-	-		-	19.75	19.7	19.6	19.5	19.4	19.2	18.8	18.5	18.0	17.4	16.7	16.0	15.0	14.2	12.2	10.5
26	KDI - 2050+	15.0	20	100	80	415	35.0	34.2	33.8	33.0	32.2	31.7	30.8	30.1	29.5	28.8	28.0	27.0	26.0	25.0	24.0	22.5	21.0	19.4	13.5	-
							18	22	26	28	30	32	34	36	40	44	46	48	52	56	60	64	68	72	76	80
27	KDI - 1065+	7.5	10	65	50	415	-	-	-	-	-	-		-	7.8	7.3	7.1	6.9	6.4	5.8	5.1	4.3	3.0	٠	-	-
28	KDI - 1360+	9.3	12.5	65	50	415	12.9	12.7	12.5	12.4	12.3	12.2	12.0	11.7	11.3	10.7	10.4	10.0	9.1	8.3	7.0	4.5		•	-	-
29	KDI - 1570+	11.0	15	65	50	415	•	-	-	13.2	13.1	13.0	12.9	12.8	12.5	12.0	11.8	11.5	10.7	10.0	9.0	8.0	6.5	٠	-	-
30	KDI - 1575+	11.0	15	65	50	415	-	-	-	-		-	-	-	-	-	-	-	8.0	7.7	7.3	6.9	6.4	5.8	4.9	3.4
31	KDI - 2560+	18.5	25	100	80	415	-	-	-	-	-	-		-	-	26.0	24.7	23.5	21.0	17.0	7.0	-	-	•	-	-
32	KDI - 3068+	22.0	30	100	80	415	٠	-	-	-	-		-	-	-	-	-	28.0	26.5	24.5	21.5	17.5	10.0		-	-

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

THREE PHASE MONOBLOC PUMP

FEATURES

Flatter Efficiency Curve

 $\label{thm:main} \mbox{Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.}$

Wide Voltage Design

The motor is designed to withstand wide voltage variation from 300 to 440 volts and reduces motor burning in case of low/high voltage.

Designed to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

High Efficiency and Energy Saving DesignInnovative design manufactured at state-of-the-art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

TECHNICAL SPECIFICATION

Head Range - Up to 80 Metres Discharge Range - Up to 49 LPS

Power Rating - 0.37 to 22 kW (0.5 to 30 HP) Voltage Range - 300 to 440 Volts (Three Phase) - B Class (Up to 7.5 HP) / Insulation

F Class (above 7.5 HP)

- IP44 / IP55 Protection

MATERIAL OF CONSTRUCTION

		GMC	KDS
Impeller	-	Cast Iron / Noryl	Cast Iron
Delivery Casing	-	Cast Iron	Cast Iron
Motor Body	-	Cast Iron	Cast Iron
Pump Shaft	-	Carbon Steel	Carbon Steel
Sealing	-	Mechanical Seal	Gland Packed

- Air conditioning and refrigeration systems
- Cooling towers
- Clear water handling at high pressure in industries
- Irrigation in horticulture & agriculture
 - Fire fighting systems

		PEF	RFORM	MANCE	E CHA	RT FOR '				GMC'								P, AT	RATE	D VC	LTAG	ìΕ,				
							12 FK	EQUI	EINC T	INK	EE PI	TASE	A.C.	PUW												
S. No.	PUMP MODEL	Power	Rating		Size	Rated Voltage	6	8	10	12	14	16	18	20	22	L HEAL	26	28	30	32	34	36	38	40	42	44
00		kW	НР	SUC.	DEL.	(Volts)	Ů		10	12	14	10	10				RES P			52	54	30	30	70	72	
1	KDS - 0510+	0.37	0.5	50	40	415	3.4	2.6	1.0			-	-	-	-	-	-	-	-		I -		T -	-	-	-
2	GMC - 112	0.75	1.0	50	50	415	6.5	5.4	4.0	2.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	GMC - 116	0.75	1.0	50	40	415	5.4	5.0	4.6	4.2	3.6	3.0	1.9	-	-	-	-	-	-	-	-	-	-	-	-	-
4	GMC - 123	0.75	1.0	32	25	415	-	-	4.1	3.6	3.2	2.7	2.2	1.7	0.9	-	-	-	-	-	-	-	-	-	-	-
5	GMC - 128	0.75	1.0	40	40	415	-	-	-	1.9	1.85	1.8	1.7	1.6	1.4	1,1	0.8	0.4	-	-	-	-	-	-	-	-
6	GMC - 128	0.75	1.0	50	40	415	-	-	-	1.9	1.85	1.8	1.7	1.6	1.4	1.1	0.8	0.4	-	-	-	-	-	-	-	-
7	GMC - 134	0.75	1.0	25	25	415	-	-	-	-	-	1.78	1.76	1.73	1.67	1.55	1.35	1.1	0.8	0.4	-	-	-	-	-	-
8	GMC - 1.514	1.1	1.5	50	50	415	-	8.5	7.1	5.7	3.0	-		-	-	-	-	-	-	-	-	-	-	-	-	-
9	GMC - 1.522	1.1	1.5	50	40	415	-	6.3	5.9	5.5	5.0	4.5	3.9	3.1	1.8	-	-	-	-	-	-	-	-	-	-	-
10	GMC - 1.525	1.1	1.5	50	40	415	2.6	2.55	2.5	2.45	2.4	2.3	2.2	2,1	2.0	1.8	1.6	1,3	0.4	-	-	-	-	·	-	-
11	GMC - 1,540	1,1	1.5	32	25	415	-	-	-	-		-	•	-	2.0	1.9	1,7	1,6	1,45	1,3	1,1	0.9	0.6	·	-	-
12	KDS - 212+	1.5	2.0	80	80	415	14.1	12.4	10.5	7.5	1	·	·	1	ŀ	-	•	•	-	1	•	ŀ	-	ı	-	-
13	KDS - 216++	1.5	2.0	65	50	415	٠	11.0	10.1	8.8	7.1	4.0	•	•	•	•	•	•	-	•	•	•		1	-	-
14	KDS - 225++	1.5	2.0	50	40	415	٠	5.3	5.1	4.9	4.7	4.5	4.2	3.9	3.5	3.1	2.3	-	-	1	•	1	-	ı	-	-
15	KDS - 235+	1.5	2.0	50	40	415	١	-	4.1	4.0	3.9	3.7	3.5	3.4	3.2	3.0	2.7	2.4	2.0	1.3	٠	٠		١	-	-
16	KDS - 314+	2.2	3.0	80	80	415	19.2	17.9	16.2	14.0	10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17	KDS - 314+	2.2	3.0	100	100	415	19.2	17.9	16.2	14.0	10.5		-	-	-	-	-	-	-		-		-	-	-	-
18	KDS - 318++	2.2	3.0	80	65	415	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-	-	-	-	-	-
19	KDS - 318++	2.2	3.0	65	50	415	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-	-	-	-	-	-
20	KDS - 325++	2.2	3.0	65	50	415	-	-	9.2	8.8	8.4	7.9	7.4	7.0	6.4	5.8	4.9	-	-	-	-	-	-	-	-	-
21	KDS - 335++	2.2	3.0	50	40	415	-	-	-	5.05	4.9	4.8	4.6	4.5	4.35	4.2	4.0	3.8	3.5	3.2	2.7	2.0	-	-	-	-
22	KDS - 515+	3.7	5.0	100	100	400	33.0	30.5	28.0	24.0	19.0	12.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23	KDS - 520+	3.7	5.0	80	80	400	-	23.0	22.0	20.8	19.5	17.9	16.0	14.0	11.0	-	-	-	-	-	-	-	-	-	-	-
24	KDS - 527++	3.7	5.0	80	65	400	-	-	-	-	-	14.3	13.5	12.5	11.6	10.4	8.7	6.4	-	-	-	-	-	-	-	-
25	KDS - 538+	3.7	5.0	65	50	400	9.0	8.9	8.85	8.8	8.7	8.6	8.55	8.45	8.35	8.25	8.1	7.9	7.6	7.1	6.6	6.0	5.1	4.0	-	-
26	KDS - 822++	5.5	7.5	100	100	400	-	-	-	27.3	25.6	24.0	22.1	20.0	17.5	14.5	-	-	-	-	-	-	-	-	-	-
27	KDS-830++	5.5	7.5	80	65	400	-	-	-	-	-	19.0	18.2	17.3	16.4	15.3	14.2	12.7	11.1	-	-	-	-	-	-	-
28	KDS - 837+	5.5	7.5	65	65	400	-	-	-	-		-	-	-	12.75	12.6	12.5	12.2	11.8	11.1	10.3	9.0	7.3	-	-	-
29	KDS-844++	5.5	7.5	65	65	400	-	-	-	-	-	-	-	-	-	-	10.6	10.2	9.9	9.5	9.0	8.4	7.8	7.0	6.1	4.7
30	KDS - 1030+	7.5	10.0	100	100	415	-	-	-	32.0	31.0	29.7	28.3	27.0	25.2	23.5	21.0	18.0	13.5	-	-	-	-	-	-	-
31	KDS - 1040+	7.5	10.0	80	65	415	-	-	23.5	23.0	22.6	22.2	21.5	20.9	20.3	19.5	18.7	17.9	17.0	15.8	14.6	13.4	12.0	9.6	-	-
32	KDS - 1331+	9.3	12.5	100	100	415	-	-	37.5	36.5	35.5	34.5	33.4	32.0	30.5	28.5	26.5	23.8	19.8	12.0	-	-	-	-	-	-
33	KDS - 1537+	11.0	15.0	100	100	415	-	-	39.0	38.5	38.0	37.2	36.5	35.5	34.5	33.0	31.6	30.0	27.8	25.0	22.0	17.5	-	-	-	-
34	KDS - 2030+	15.0	20.0	125	125	415	-	-	-	-	-	49.0	47.0	45.0	42.0	39.0	35.0	30.0	21.0	-	-	-	-	-	-	-

Note:

- All the pump set from 0.5 HP to 1.5 HP in mechanical seal arrangement and 2.0 HP to 20.0 HP in Gland pack arrangement except KDS 212+ which is supplied only in mechanical seal arrangement.
 Performance under standard test conditions and may vary on site conditions.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	PERFORMANCE CHART FOR'KDS+/KDS++/GMC' SERIES, 2 POLE, MONOBLOC PUMP, AT RATED VOLTAGE, 50 Hz FREQUENCY, THREE PHASE A.C. POWER SUPPLY Power Rating Power Rating Pipe Size Size																										
			Power	Pating	Pipe	Size	Rated	50 HZ	FREC	ZUENC	, t, i mr	ice Pr	IASE F	1.0. PC	JWER			IN MI	ETRES								
s	. No.	PUMP MODEL	Fower	nating	(m	nm)	Voltage	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	52	54
			kW	HP	SUC.	DEL.	(Volts)								DISC	HARGE	IN LI	RES P	ER SE	COND							
	35	KDS - 550++	3.7	5	50	40	400	-	-	-	-	-	-	-	-	-	-	-	4.1	3.9	3.7	3.5	3.3	3.0	2.7	2	-
	36	KDS - 852++	5.5	7.5	65	50	400	-	-	-	-	-	-	-	-	-	8.6	8.3	8.0	7.75	7.4	7.1	6.7	6.3	5.9	4.5	-
	37	KDS - 1050+	7.5	10	65	65	415	-	-	-	-	-	-	12.7	12.5	12.2	12.0	11.7	11.4	11.0	10.7	10.2	9.6	8.9	8.1	6.0	-
	38	KDS - 1348+	9.3	12.5	80	65	415	-	-	-	19.5	19.2	18.8	18.5	18.1	17.6	17.2	16.6	15.9	15.1	14.3	13.0	11.9	10.2	6.5	-	-
	39	KDS - 1555+	11.0	15	80	65	415	-	-	-	-	19.75	19.7	19.6	19.5	19.4	19.2	18.8	18.5	18.0	17.4	16.7	16.0	15.0	14.2	12.2	10.5
	40	KDS - 2050+	15.0	20	100	80	415	35.0	34.2	33.8	33.0	32.2	31.7	30.8	30.1	29.5	28.8	28.0	27.0	26.0	25.0	24.0	22.5	21.0	19.4	13.5	_

	Performance Chart Forkids+/Kds++/GMC Series, 2 Pole, Monobloc Pump, at rated voltage, Solid Pump Model Pump Mod																									
		Dawer	Datina	Pipe	Size	Rated									TOTA	L HEAI	IN MI	ETRES								
S. No.	PUMP MODEL	Power	Hating	(m	ım)		18	22	26	28	30	32	34	36	40	44	46	48	52	56	60	64	68	72	76	80
		kW	HP	SUC.	DEL.	(Volts)								DISC	HARGE	IN LI	RES P	ER SE	COND							
41	KDS - 1065++	7.5	10	65	50	415	-	-	•	-				-	7.8	7.3	7.1	6.9	6.4	5.8	5.1	4.3	3.0	-	-	-
42	KDS - 1360+	9.3	12.5	65	50	415	12.9	12.7	12.5	12.4	12.3	12.2	12.0	11.7	11.3	10.7	10.4	10.0	9.1	8.3	7.0	4.5	-	-	-	-
43	KDS - 1570+	11.0	15.0	65	50	415	•		-	13.2	13.1	13.0	12.9	12.8	12.5	12.0	11.8	11.5	10.7	10.0	9.0	8.0	6.5	-	-	-
44	KDS - 1575+	11.0	15.0	65	50	415	1	ŀ	1	1	-		-	-	-	-	-	-	8.0	7.7	7.3	6.9	6.4	5.8	4.9	3.4
45	KDS - 2560+	18.5	25.0	100	80	415	-	-	-	-	-	-	-	-	-	26.0	24.7	23.5	21.0	17.0	7.0	-	-	-	-	-
46	KDS - 3068+	22.0	30.0	100	80	415	-		-	-	-		-	-	-	-	-	28.0	26.5	24.5	21.5	17.5	10.0	-	-	-

- Note:

 All the pump set from 0.5 HP to 1.5 HP in mechanical seal arrangement and 2.0 HP to 20.0 HP in Gland pack arrangement except KDS 212+ which is supplied only in mechanical seal arrangement.

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

KDT

THREE PHASE MONOBLOC PUMP

TWO STAGE

FEATURES

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

High Head Applications

The pump has been designed to deliver large volumes of water for high head applications, helping customers to achieve high turnaround time and productivity.

Wide Voltage Design

The motor is designed to withstand wide voltage Variation from 300 to 440 volts and reduces motor burning in case of low/high voltage.

Designed to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

• Fire fighting systems ensuring consistent performance as concentricity is maintained.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life.

All major CI parts of Kirloskar pumps coming in contact with the water are CED

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

High Efficiency and Energy Saving Design

Innovative design manufactured at state-of-the-art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

TECHNICAL SPECIFICATION

Head Range - Up to 110 Metres Discharge Range - Up to 20 LPS

Power Rating - 3.7 to 15 kW (5 to 20 HP) Voltage Range - 300 to 440 Volts (Three Phase)

Insulation - B / F Class - IP44 / IP55 Protection

MATERIAL OF CONSTRUCTION

- Cast Iron / Bronze / Stainless Steel Impeller

Delivery Casing Cast Iron Motor Body - Cast Iron

- Carbon Steel / Stainless Steel Pump Shaft

Sealing - Gland Packed / Mechanical Seal

- Air conditioning and refrigeration systems
- Cooling towers
- Clear water handling at high pressure in industries
- Industrial pressure boosting

	PERFORMANCE CHART FOR 'KDT+' SERIES, 2 POLE, MONOBLOC PUMPS, AT RATED VOLTAGE, 50Hz FREQUENCY, THREE PHASE A.C. POWER SUPPLY																				
		Power Rating		Pipe Size (mm)		Rated															
S. No.	PUMP MODEL					Voltage	24	28	32	36	40	44	48	52	56	60	64	68	72	76	
		kW	HP	SUC. DEL.		(Volts)	DISCHARGE IN LITRES PER SECOND														
1	KDT - 544	3.7	5	65	50	400	7.3	6.8	6.2	5.6	4.8	3.5	-	-	-	-	-	-	-	-	
2	KDT - 568+	3.7	5	50	40	400	-	-	-	4.3	4.0	3.7	3.4	3.0	2.5	2.0	1.2	-	-	-	
3	KDT - 844+	5.5	7.5	80	65	400	12.6	11.8	10.9	10.0	9.0	7.5	5.2	-	-	-	-	-	-	-	
4	KDT - 864+	5.5	7.5	65	50	400	-	-	7.6	7.25	6.9	6.5	6.1	5.6	5.0	4.2	2.8	-	-	-	
5	KDT - 1050+	7.5	10	80	65	415	14.3	13.8	13.1	12.4	11.5	10.5	9.2	7.8	-	-	-	-	-	-	
6	KDT - 1078+	7.5	10	65	50	415	-	-	-	8.3	8.0	7.7	7.4	7.1	6.7	6.2	5.6	5.0	4.0	2.1	
7	KDT - 1372+	9.3	12.5	65	65	415	-	-	-	11.5	11.0	10.5	9.8	9.2	8.5	7.8	7.0	6.0	4.7	2.5	
8	KDT - 2070+	15	20	80	65	415	-	-	-	-	20.0	19.0	18.2	17.2	16.2	15.0	13.8	12.0	9.2	-	
						46	48	52	56	60	64	68	72	76	80	90	94	98	110		
9	KDT - 1388+	9.3	12.5	65	50	415	-	-	-	-	7.2	6.9	6.5	6.2	5.8	5.4	3.9	3.0	-	-	
10	KDT - 1580+	11	15	65	65	415	11.3	11.1	10.6	10.1	9.5	9.0	8.3	7.7	7.1	6.3	3.2	-	-	-	
11	KDT - 1598+	11	15	65	50	415	-	-	-	-	-	-	-	7.4	7.1	6.7	5.7	5.3	4.8	1.8	
12	KDT - 2095+	15	20	65	65	415	-	-	-	-	13.0	12.5	12.0	11.5	10.9	10.2	8.0	7.0	5.5	-	

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

KS

THREE PHASE MONOBLOC PUMP

SLOW SPEED

FEATURES

Flatter Efficiency Curve

 $\label{lem:main_def} \mbox{Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.}$

Wide Voltage Design

The motor is designed to withstand wide voltage variation from 300 to 440 volts and reduces motor burning in case of low/high voltage.

Designed to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Cooling towers

CED Coated Impeller

Resistance to corrosion leading to longer life.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

TECHNICAL SPECIFICATION

Head Range Up to 22 Metres Up to 72.5 LPS Discharge Range Power Rating 2.2 to 7.5 kW (3 to 10 HP) Voltage Range 300 to 440 Volts (Three Phase)

B / F Class Insulation Protection IP44

MATERIAL OF CONSTRUCTION

Cast Iron Impeller Delivery Casing Cast Iron Motor Body Cast Iron Shaft Carbon Steel Sealing Gland Packed

- Irrigation in horticulture & agriculture
- Swimming pool application
- Water transfer and circulation
- Air conditioning and refrigeration systems

	PERFORMANCE CHART FOR 'KS+' SERIES, 4 POLE, MONOBLOC PUMPS, AT RATED VOLTAGE, 50Hz FREQUENCY, THREE PHASE A.C. POWER SUPPLY																		
		Power Rating		Pipe Size (mm)		Rated	Rated	TOTAL HEAD IN METRES											
S. No.	PUMP MODEL					Voltage	Speed	5	6	8	10	12	14	16	18	20	22		
		kW	HP	SUC.	DEL.	(Volts)	(RPM)	DISCHARGE IN LITRES PER SECOND											
1	KS - 316+	2.2	3	65	50	415	1400	-	-	-	-	13.4	11.6	9.3	-	-	-		
2	KS - 513+	3.7	5	100	100	415	1420	-	34.0	30.9	27.0	22.0	10.0	-		-	-		
3	KS - 516+	3.7	5	80	65	415	1420	-	-	-	-	23.7	20,8	17.5	13,20	-	-		
4	KS - 810+	5.5	7.5	150	150	400	1420	68.0	63.5	55.0	44.0	-	-	-		-	-		
5	KS - 817+	5.5	7.5	100	100	400	1420	-		-	34.4	31.8	29.0	25.3	19.2	-	-		
6	KS - 823+	5,5	7,5	100	80	400	1420	-	-	-	-	-	27.3	25.0	22,2	18.8	14,5		
7	KS - 1012+	7.5	10	150	150	400	1420	-	72.5	66.6	59.5	49.5	30.0	-	-	-	-		
8	KS - 1022+	7.5	10	100	100	400	1430	-			-	-	36.0	33.0	29.0	24.2	17.5		

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SRF

THREE PHASE MONOBLOC PUMP

TWO STAGE

FEATURES

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Wide Voltage Design

The motor is designed to withstand wide voltage variation from 300 to 440 volts and reduces motor burning in case of low/high voltage.

Designed to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

CED Coated Impeller

Resistance to corrosion leading to longer life.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

High Efficiency and Energy Saving Design

Innovative design manufactured at state-of-the-art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

TECHNICAL SPECIFICATION

Head Range - Up to 94 Metres
Discharge Range - Up to 30.9 LPS

Power Rating - 18.3 to 22 kW (25 to 30 HP)

Voltage Range - 300 to 440 Volts (Three Phase)

Insulation - F Class Protection - IP55

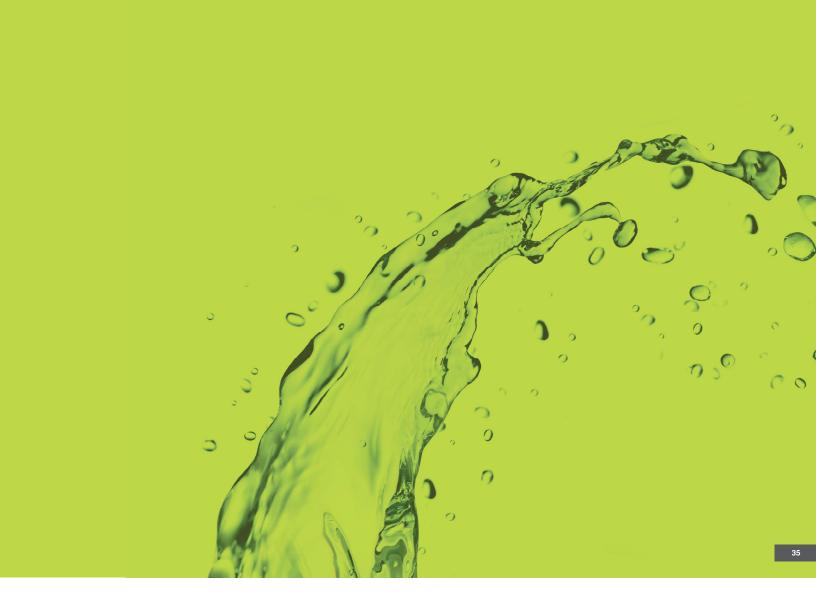
MATERIAL OF CONSTRUCTION

 Impeller
 Cast Iron

 Delivery Casing
 Cast Iron

 Motor Body
 Cast Iron

 Pump Shaft
 Carbon Steel


 Sealing
 Gland Packed

- Fire fighting systems
- Clear water handling at high pressure in industries
- Water supplies for high rise building
- Irrigation in horticulture & agriculture
- Washing and cleaning systems

	PERFORMANCE CHART FOR 'SRF' SERIES, 2 POLE, MONOBLOC PUMPS, AT RATED VOLTAGE, 50 Hz FREQUENCY, THREE PHASE A.C. POWER SUPPLY																							
S No	PUMP MODEL	Power Rating		Pipe Siz	ze (mm)	Rated Voltage	14	20	26	32	36	40	44	TOTA 48	L HEAD	IN ME	TRES	64	68	72	76	80	90	94
J. 140.	POWP WODEL	kW	HP	SUC. DEL		(Volts)	DISCHARGE IN LITRES PER SECOND															94		
1	SRF - 2570	18.3	25	100	100	415	28.0	27.1	26.0	24.8	24.0	23.0	22.0	20.7	19.2	17.6	16.0	14.3	12.0	9.0	-	-	-	-
2	SRF - 3085	22	30	100	100	415	30.9	30.1	29.3	28.3	27.6	26.5	25.5	24.0	22.8	21.5	20.0	18.3	17.1	15.6	13.8	11.5	-	-
3	SRF - 3095	22	30	100	100	415	-	-	-	-	-	-	-	-	-	-	-	-	-	19.2	17.5	16.0	10.0	6.0

- Note:
 Performance under standard test conditions and may vary on site conditions.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

OPENWELL SUBMERSIBLE PUMPS
THREE PHASE

THREE PHASE OPEN-WELL PUMPS

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variation from 300 to 440 volts and reduces motor burning in case of low/high voltage.

Lightweight and Compact DesignConstructed with special grade engineering materials, compact designs for ease of handling and installation.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that the pump can be serviced even at remote locations by semi-skilled technicians.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

High Efficiency and Energy Saving Design

Innovative design manufactured at state-of-the-art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Advanced Water Cooled Motors Designs

The motor is filled with potable water which protects it from overheating and facilitates smoother and trouble free operation for years.

TECHNICAL SPECIFICATION

Head Range Up to 38 Metres Up to 11 LPS Discharge Range Power Rating 0.75 to 1.5 kW (1.0 to 2 HP) Voltage Range 300 to 440 Volts (Three Phase)

Insulation IP68 Protection

MATERIAL OF CONSTRUCTION

Impeller Cast Iron / Noryl **Delivery Casing** Cast Iron Cast Iron Motor Body Pump Shaft Stainless Steel

- Domestic and community water supply
- Gardening and small farm irrigation
- Water fountains
- Construction site
- Water supply to over head tanks

		PERFOR	RMANCE	CHART		OS-M' SERI Iz FREQUE								MPS,	AT RAT	TED VO	OLATG	iΕ,				
		Dower	Rating	Pipe	Size	Rated						Т	OTAL	HEAL	IN N	IETER	≀S					
S. No.	PUMP MODEL	Fower	nating	(n	nm)	Voltage	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38
		kW	HP	SUC.	DEL.	(Volts)			, in the second		DIS	SCHA	RGE I	N LIT	RES F	PER S	ECON	IDS	, in the second	, in the second	, in the second	
1	KOS - 116M	0.75	1.0	50	40	415	4.9	4.4	3.9	3.1	1.7						-			-	-	-
2	KOS - 123M	0.75	1.0	32	25	415	4.8	4.5	4.2	3.8	3,5	3.0	2.4	1.5			•	•		-	-	-
3	KOS - 134M	0.75	1.0	25	25	415	-	-	1.9	1.8	1.8	1.7	1.6	1.5	1.4	1.3	1,1	0.9	0.6	0.2	-	-
4	KOS - 1.522M	1,1	1.5	50	40	415	6	5.7	5.3	4.9	4.4	3,6	2,5				-	-		-	-	-
5	KOS - 1.525M	1,1	1.5	50	40	415	-	-	3.6	3.5	3.4	3.2	2.9	2.7	2.4	2.1	1.7	0.6		-	-	-
6	KOS - 1.540M	1.1	1.5	32	25	415	-	-	-	-					1.9	1.8	1.6	1.4	1.3	1.1	0.9	0.6
7	KOS - 216M	1.5	2.0	65	50	415	11.0	9.9	8.7	6.9	-	-	-	-	-	-	-	-	-	-	-	-
8	KOS - 225M	1.5	2.0	50	40	415	-	-	4.8	4.6	4.4	4.2	3.7	3.2	2.5	-	-	-	-	-	-	-
9	KOS - 235M	1.5	2.0	50	40	415	-	-	4.4	4.2	4.0	3.8	3.6	3.3	3.0	2,7	2.3	1.7	8.0	-	-	-

- Note:

 All models are also available in single phase, expect KOS-235M

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

THREE PHASE OPEN-WELL PUMPS

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variation from 200 to 440 volts and reduces motor burning in case of low/high voltage.

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that the pump can be serviced even at remote locations by semi-skilled technicians.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED

High Efficiency and Energy Saving Design

Innovative design manufactured at state-of-the-art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Advanced Water Cooled Motors Designs

The motor is filled with potable water which protects it from overheating and facilitates smoother and trouble free operation for years.

TECHNICAL SPECIFICATION

Head Range Up to 76 Metres Discharge Range Up to 38 LPS

Power Rating 2.2 to 11 kW (3 to 15 HP)

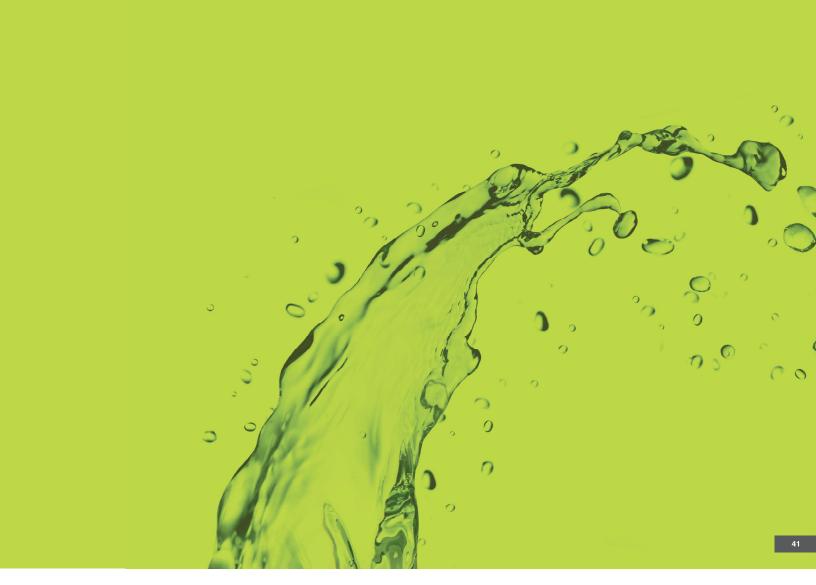
Voltage Range 200 to 440 Volts Insulation PP

IP68 Protection

MATERIAL OF CONSTRUCTION

Impeller Cast Iron **Delivery Casing** Cast Iron Motor Body Cast Iron Pump Shaft Stainless Steel

- Industrial service water supply schemes
- Domestic and community water supply
- Construction site
- Irrigation in horticulture & agriculture
- Water supplies for high rise building



			PE	RFORM	ANCE C	HART FOF	R KOS S Hz FRE								JMP, A1	RATE	D VOLT	AGE,					
		Dames	Rating	Dina Cir	ze (mm)	Rated							Т	OTAL H	EAD IN	METRE	S						
S. No.	PUMP MODEL	Power	Rating	Pipe Si	ze (mm)	Voltage	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
		kW	HP	SUC.	DEL.	(Volts)							DISCHA	ARGE IN	LITRE	S PER S	ECOND	1					
1	KOS - 314	2.2	3	80	80	380	16.0	15.2	13.6	10.8	5.0	•	-	-					-	-	-	-	-
2	KOS - 318	2.2	3	65	50	380	12.8	12.2	11.4	10.4	9.2	7.7	4.8	-	-	-	-		-	-	-	-	-
3	KOS - 325	2.2	3	65	50	380	-	•	8.8	8.4	7.9	7.5	6.9	6.3	5.6	4.7	3.1					-	-
4	KOS - 335	2.2	3	50	40	380	-	•	•	-	•	6.5	6.4	6.2	6.0	5.7	5.1	4.6	4.0	3.0	2.2	-	-
5	KOS - 520	3.7	5	80	80	380	22.6	21.5	20.0	18.7	17.3	15.5	13.2	10.0	-	-	-	-	-	-	-	-	-
6	KOS - 527	3.7	5	80	65	380	16.2	15.7	15.0	14.4	13.6	12.8	12.0	10.8	9.6	8.4	6.0	-	-	i	÷	1	-
7	KOS - 822	5.5	7.5	100	100	380	-	-	27.0	25.6	24.0	22.0	20.0	17.5	14.0	•	-	•	-	-	-	-	-
8	KOS - 830	5.5	7.5	80	65	380	-	-	-	-	18.7	17.9	17.0	16.0	15.0	13.8	12.4	10.5	7.0	-	-	-	-
9	KOS - 1030	7.5	10	100	100	380	-	-	32.0	31.0	29.8	28.2	27.0	25.0	23.5	21.0	18.0	13.5	-	-	-	-	-
10	KOS - 1040	7.5	10	80	65	380	-	-	-	20.6	20.3	19.9	19.4	18.9	18.3	17.7	17.0	16.4	15.5	14.5	13.5	12.0	9.5
11	KOS - 1331	9.3	12.5	100	100	380	-	-	-	-	-	-	38.0	37.0	36.0	33.0	30.0	28.0	25.0	20.0	-	-	-
12	KOS - 1537	11	15	100	100	380	-	-	-	-	38.0	37.2	36.8	36.0	34.5	33.0	30.5	28.0	25.0	21.0	15.0	-	-
							22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54
13	KOS - 538	3.7	5	65	50	380	8.8	8.3	7.8	7.2	6.6	6.0	5.0	4.0			-	-	-	-	-	-	-
14	KOS - 550	3.7	5	50	40	380	-	-	-	-	-	-	4.5	4.3	4.1	3.8	3.5	3.2	2.7	2.2	1.0	-	-
15	KOS = 844	5.5	7.5	65	65	380	-	10.7	10.3	10.1	9.7	9.2	8.7	8.0	7.3	6.5	5.3	3.0	-	-	-	-	-
16	KOS - 852	5.5	7.5	65	50	380	-	-	-	-	-	8.4	8.2	7.9	7.7	7.3	6.9	6.5	5.5	4.7	4.0	-	-
17	KOS = 1050	7.5	10	65	65	380	-	12.8	12.6	12.4	12.2	12.0	11.7	11.3	10.9	10.5	10.0	9.4	8.7	8.0	7.0	6.0	4.0
18	KOS - 1348	9.3	12.5	80	65	380	-	-	-	22.0	20.5	20.0	19.0	18.0	17.0	16.0	15.0	13.5	12.5	11.0	-	-	-
19	KOS - 1555	11	15	80	65	380	-	22.7	22.5	22.1	22.0	21.5	21.0	20.5	19.8	18.5	17.5	16.5	15.2	14.0	13.0	11.5	7.5
							42	44	46	48	50	52	56	60	64	68	72	76	-	-	-	-	-
20	KOS - 1065	7.5	10	65	50	380	7.1	7.0	6.8	6.6	6.4	6.2	5.7	5.1	4.2	2.8	-	-	-	-	-	-	-
21	KOS - 1575	11	15	65	50	380	-	-	-	-	-	7.4	7.0	6.5	6.0	5.4	4.8	3.5	-	-	-	-	-

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SELF PRIMING SEWAGE / DEWATERING PUMPS

SP COUPLED SET

ENERGY EFFICIENT PUMPSET WITH IE5 MOTOR

Ultra Premium Efficiency IE5 Motor

FEATURES

Ultra Premium Efficiency

Lower life cycle cost with lower operating cost.

Higher Specific Discharge (discharge rate per unit power)

Up to 16.5% less energy consumption for pumping same amount of fluid.

High grade F-Class insulation with Temperature rise limited to B-Class#

Robust design to withstand higher temperatures reducing the chances of motor burning and ensures the reliability, safety and enhanced life.

High Efficiencies Achieved with AC Induction Motor Design

Rugged and most suited to work under varied field conditions, Easy to operate, maintain and service at local levels as there is no use of permanent magnets / added accessories/control equipment.

CED Coated Impeller

Resistance to corrosion leading to longer life.

Optimum Fan and Fan Cover Design

Designed for optimum cooling with minimum power consumption and quiet operation.

Self-priming

No need of foot valve and priming pump set every time resulting into quicker start up time.

Non-clog Impeller

Non-clog impeller to handle suspended soft solids up to 10.5 mm in size making it suitable for waste water, sewage and dewatering applications.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

For selected models only

TECHNICAL SPECIFICATION

Head Range - Up to 32 Metres Discharge Range - Up to 10 LPS

Power Rating - 0.75 to 3.7 kW (1 to 5 HP) Voltage range - $415\pm10\%$

Insulation - F Class Protection - IP55

MATERIAL OF CONSTRUCTION

Impeller - Cast Iron / Stainless Steel / Bronze

Delivery Casing - Cast Iron Motor Body - Cast Iron

Pump Shaft - Carbon Steel / Stainless Steel

Shaft sleeve - Stainless Steel

Sealing - Gland Packed / Mechanical Seal with HNBR which can withstand fluid

temperature up to 120°C

- Handling light chemicals, effluents, sewage, ashwater, etc.
- Flood / Rain water handling
- Draining foundations, trenches and pits
- Pumping water from docks, ports, vessels
- Draining accumulated water from basements, Road, highways, parking lots, etc.
- Cooling water for marine engines, shovels and piling equipment.

			PER	FORMAN	ICE CHA			S, SELF PRI D RPM, THRI						RGY E	FFICI	ENT IE	5 MO	TORS					
		Power	Rating	Dine Si	ze (mm)	Rated	Impeller	Solid	Rated						TOTA	L HEAI	D IN M	ETRES					
S. No	PUMP	FOWEI	maung	ripe Si.	26 (11111)					6	8	10	12	14	15	16	17	18	19	20	22	24	25
01110	MODEL	kW	HP SUC. DEL. (Volts) (mm) Size (mm) Size (mm) DISCHARGE IN LITRES PER SECOND																				
1	SP - 0	0.75	1.0	40	40	415	116	7.0	2760	4.6	4.1	3.5	2.6	1.5	0.7	-	-	-	-	-	-	-	-
2	SP - 1H	1.5	2.0	40	40	415	134	8.5	2900	-	-	6.3	5.6	4.8	4.5	3.9	3.4	2.7	1.9	-	-		-
3	SP - 2H	2.2	3.0	50	50	415	145	10.5	2900	-		9.2	8.7	8.1	7.8	7.3	6.9	6.5	6.0	5.4	4.2	2.6	1.8
										20	22	23	24	26	28	30	32	34	36	38	40	42	43

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

ENERGY EFFICIENT PUMPSET WITH IE4 MOTOR

Premium Efficiency IE4 Motor

FEATURES

Premium Efficiency Lower life cycle cost with lower operating cost.

High grade F-Class insulation with Temperature rise limited to B-Class

Robust design to withstand higher temperatures reducing the chances of motor burning and ensures the reliability, safety and enhanced life.

High Efficiencies Achieved with AC Induction Motor Design

Rugged and most suited to work under varied field conditions. Easy to operate, maintain and service at local levels as there is no use of permanent magnets/added accessories/control equipment.

Higher Specific Discharge (discharge rate per unit power)

Up to 14% less energy consumption for pumping same amount of fluid.

CED Coated Impeller

Resistance to corrosion leading to longer life.

Optimum Fan and Fan Cover Design

Designed for optimum cooling with minimum power consumption and quiet

Self-priming

No need of foot valve and priming pump set every time resulting into quicker start up

Non-clog Impeller

Non-clog impeller to handle suspended soft solids up to 34 mm in size making it suitable for waste water, sewage and dewatering applications.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

For selected models only

TECHNICAL SPECIFICATION

- Up to 36 Metres Head Range Discharge Range Up to 66.5 LPS

0.75 to 15 kW (1 to 20 HP) Power Rating

Voltage range 415±10% Insulation F Class Protection IP55

MATERIAL OF CONSTRUCTION

Impeller - Cast Iron / Stainless Steel / Bronze

Delivery Casing Cast Iron Motor Body Cast Iron

Pump Shaft Carbon Steel / Stainless Steel

Shaft sleeve Stainless Steel

Sealing Gland Packed / Mechanical Seal with

> HNBR which can withstand fluid temperature up to 120°C

- Handling light chemicals, effluents, sewage, ashwater, etc.
- Flood / Rain water handling
- Draining foundations, trenches and pits
- Pumping water from docks, ports, vessels
- Draining accumulated water from basements, Road, highways, parking lots, etc.
- Cooling water for marine engines, shovels and piling equipment,

			P	ERFOR	MANCE	CHART		SERIES, RATED R								Y EFFI	CIENT	IE4 M	IOTOR	S				
	D.1114D	Dawes	Rating	Dina Ci	()	Rated		Solid	Rated						т	OTAL H	IEAD IN	METRE	S					
S. No.	PUMP MODEL	Power	Haung	Pipe Si	ze (mm)	Voltage	Impeller	Handling	Speed	6	8	10	12	14	15	16	17	18	19	20	22	24	25	26
	MODEL	New HP SUC. DEL. (Volts) Size (mm) (RPM) DISCHARGE IN LITRES PER SECOND																						
1	SP • 0	0.75	1.0	40	40	415	116	7.0	2760	4.6	4.1	3.5	2.6	1.5	0.7	-	-	-	-	-		-	-	-
2	SP - 1H	1.5	2.0	40	40	415	134	8.5	2900			6.3	5.6	4.8	4.5	3.9	3.4	2.7	1.9	-			-	-
3	SP - 2H	2.2	3.0	50	50	415	145	10.5	2900	-	-	9.2	8.7	8.1	7.8	7.3	6.9	6.5	6.0	5.4	4.2	2.6	1.8	-
4	SP • 3L+	3.7	5.0	80	80	415	224	15.5	1450	-		18.0	16.4	13.5	11.5	9.8	7.8	5.5	2.7	-	-		-	-
5	SP - 4LA+	7.5	10	100	100	415	292	18.5	1450	-	-	36.0	33.6	31.3	30.0	28.5	27.0	25.5	24.0	22.0	18.0	12.0	7.0	-
6	SP • 4L+	9.3	12.5	100	100	415	292	23.0	1450	-	-	41.0	39.0	36.5	35.0	33.5	32.0	30.0	28.0	26.1	22.0	16.8	13.7	10.0
7	SP-6LA	15.0	20.0	150	150	415	296	34.0	1450		-	66.5	63.4	60.0	57.5	55.0	52.5	49.0	45.0	42.0	34.3	24.0	16.0	-
										20	22	23	24	26	28	30	32	34	36	38	40	42	43	44
8	SP - 3A	3.7	5.0	80	80	415	174	7.0	2900	10.1	9.1	8.7	8.0	6.8	5.2	3.7	1.9	-	-	-		-	-	-
9	SP - 3	5,5	7.5	80	80	415	174	14.5	2900	16.4	16,2	15.9	15.4	14.0	12.4	10.5	8.0	5.5	3.0	-		-	-	- 1

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SP BS

FEATURES

Self Priming

No need of foot valve and priming pumpset every time for quicker operations.

Non Clog Impeller

Non clog impeller to handle suspended soft solids upto 60 MM in size made it suitable for sewage and dewatering applications.

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Designed to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Dynamically Balanced Rotating Parts

Minimum vibration protects the components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

CED Coated Impeller

Resistance to corrosion leading to longer life.

APPLICATIONS

- · Handling chemicals, effluents, sewage, ash-water
- Dewatering foundation, trenches and pits
- Flood water handling
- Pumping water from docks, ports, vessels
- Dewatering from basements, multi-storeys, shopping malls, godowns
- Cooling water for marine engines and shovels

SP M

SP COUPLED

With Energy Efficient IE2 Motor

TECHNICAL SPECIFICATION

SP BARE SHAFT/MOTOR COUPLED SP MONOBLOC

 Head Range
 Up to 44 Metres
 Up to 24 Metres

 Discharge Range
 Up to 80 LPS
 Up to 17.5 LPS

 Power Rating
 0.75 to 18.7 kW (1 to 25 HP) Motor Coupled* (0.5 to 5 HP)
 0.37 to 3.7 kW (0.5 to 5 HP)

 Class of Insulation
 F Class (Motor coupled only)
 B / F Class

 Protection
 IP55
 IP44 / IP55

Gland Packed / Mechanical Seal

*Energy Efficient IE2 Motor

MATERIAL OF CONSTRUCTION

Sealing

		SP BARE SHAFT	SP MONOBLOC	SP MOTOR COUPLED
Impeller	-	Cast Iron / Stainless Steel/ Bronze	Cast iron / Stainless Steel/ Bronze	Cast Iron / Stainless Steel/ Bronze
Delivery Casing	-	Cast Iron	Cast Iron	Cast Iron
Motor Body	-	-	Cast Iron	Cast Iron
Shaft	-	Carbon Steel / Stainless Steel	Carbon Steel / Stainless Steel	Carbon Steel / Stainless Steel
Shaft Sleeve	-	Stainless Steel	Stainless Steel	Stainless Steel

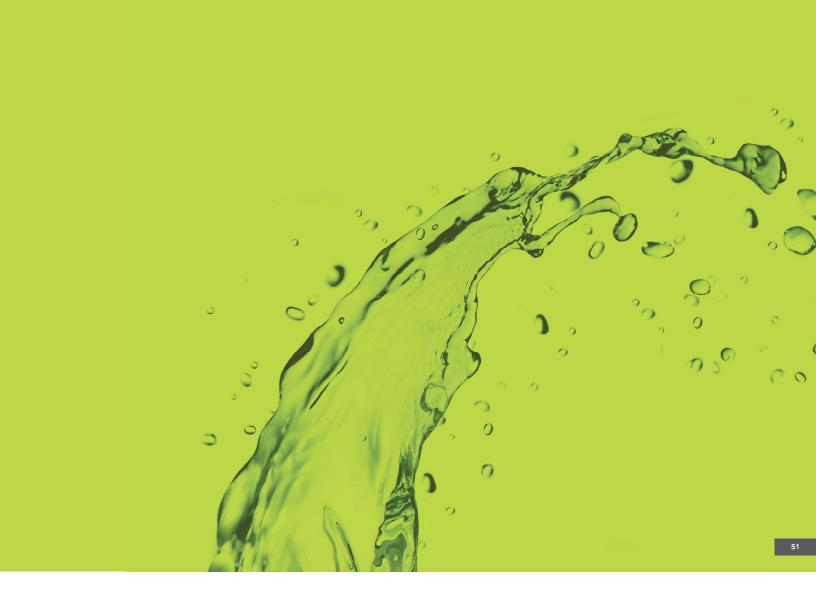
Gland Packed / Mechanical Seal

Gland Packed / Mechanical Seal

			PE	RFORM	ANCE (CHART F		RIES, SELI RATED RI								GY EF	ICIEN	T IE2 I	иото	RS				
	PUMP	Power	Rating	Pipe Siz	ze (mm)	Rated	Impeller	Solid	Rated						T	OTAL H	EAD IN	METRI	S					
S. No.	MODEL			. ipe oii		Voltage	Dia (mm)	Handling	Speed	6	8	10	12	14	15	16	17	18	19	20	22	24	25	26
		kW	HP	SUC.	DEL.	(Volts)	,	Size (mm)	(RPM)						DISCHA	RGE IN	LITRE	S PER	SECON	D				
1	SP - 0	0.75	1.0	40	40	415	116	7.0	2760	4.6	4.1	3.5	2.6	1.5	0.7	-		-	-	-		-	-	-
2	SP - 1H	1.5	2.0	40	40	415	134	8.5	2900	-		6.3	5.6	4.8	4.5	3.9	3.4	2.7	1.9			-	-	-
3	SP - 2H	2.2	3.0	50	50	415	145	10.5	2900	-	-	9.2	8.7	8.1	7.8	7.3	6.9	6.5	6.0	5.4	4.2	2.6	1.8	-
4	SP-3L++	3.7	5.0	80	80	415	224	15.5	1450	-	-	18.0	16.4	13.5	11.5	9.8	7.8	5.5	2.7	-		-	-	-
5	SP - 4LA+	7.5	10	100	100	415	292	18.5	1450	-	-	36.0	33.6	31.3	30.0	28.5	27.0	25.5	24.0	22.0	18.0	12.0	7.0	-
6	SP - 4L+	9.3	12.5	100	100	415	292	23.0	1450	-	-	41.0	39.0	36.5	35.0	33.5	32.0	30.0	28.0	26.1	22.0	16.8	13.7	10.0
7	SP-6LA	15.0	20.0	150	150	415	296	34.0	1450	-	-	66.5	63.4	60.0	57.5	55.0	52.5	49.0	45.0	42.0	34.3	24.0	16.0	-
8	SP-6L	18.7	25.0	150	150	415	296	40.0	1450	-	-	75.0	72.5	68.7	66.2	64.0	61.3	58.5	55.0	52.0	44.5	34.0	27.5	20.0
9	SP-8LA	11.0	15.0	200	200	415	240	60.0	1450	-	80.0	72.0	60.0	32.0	20.0	-	-	-	-	-	-	-	-	-
										20	22	23	24	26	28	30	32	34	36	38	40	42	43	44
10	SP-3A	3.7	5.0	80	80	415	174	7.0	2900	10.1	9.1	8.7	8.0	6.8	5.2	3.7	1.9	-	-	-	-	-	-	-
11	SP = 3	5.5	7.5	80	80	415	174	14.5	2900	16.4	16.2	15.9	15.4	14.0	12.4	10.5	8.0	5.5	3.0	-	-	-	-	-
12	SP - 3HH	9.3	11.0	80	80	415	194	14.5	2900	-	-	-	19.0	18.6	18.0	17.3	16.5	15.0	12.8	10.6	8.6	6.8	6.0	4.9

Note:

- SP-8LA, SP-3HH Pump is supplied with Bare Shaft Arrangement Only.
 SP COUPLED SET with IE4 Motor is available upto 20.0 HP.
 SP COUPLED SET with IE5 Motor is available upto 5.0 HP with 2 Pole Motor Only.
 Performance under standard test conditions and may vary on site conditions.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.


			Р	ERFOR	MANCE		OR SP-M SI							S, AT F	RATED	SPEE	D,					
		Bower	Rating	Pipe	Size	Rated		Solid	Rated					TC	TAL H	EAD IN	METE	RS				
S. No	PUMP MODEL		nating	(m	ım)	Voltage	Impeller	Handling	Speed	6	8	10	12	14	15	16	17	18	19	20	22	24
01110		kW	W HP SUC. DEL. (Volts) DIA. (mm) SIZE (RPM) DISCHARGE IN LITRES PER SECOND																			
- 1	SP - 05M*	0.37	0.5	40	40	210/415	116	5.0	2700	3.1	2.6	2.1	1.2	-			-	-	-	-	-	-
2	SP - 0M*	0.75	1.0	40	40	210/415	116	7.0	2700	4.4	3.9	3.2	2.25	1.0	-	-	-	-	-	-	-	-
3	SP-1HM	1.5	2.0	40	40	415	134	8.5	2800	-	-	5.9	5.1	4.25	3.7	3.1	2.4	1.5	-	-	-	-
4	SP - 2HM	2.2	3.0	50	50	415	145	10.5	2800	-	-	8.7	8.1	7.4	7.0	6.5	6.1	5.5	5.0	4.3	3.0	1.0
5	SP - 3L++M	3.7	5.0	80	80	415	224	15.5	1420			17.5	15.5	12.5	10.5	8.5	6.0	3.5	-	-	-	-

- SP-05M and SP-0M are supplied with mechanical seal arrangement and also available in single phase.
 All other models are supplied with stuffing box arrangement for gland packed or mechanical seal as per the requirement.
 Performance under standard test conditions and may vary on site conditions.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

					F	PERFOR	MANCE (CHART FOR		RIES, S TED VO			, ENGI	NE COL	JPLED	SET						
ſ			Dower	Dating	Pipe	Size	Impoll	Solid	Datad					TC	TAL H	EAD IN	IMETE	RS				
١,	S. No.	PUMP	rowei	natility	(m	ım)		Handling		10	12	14	15	16	18	19	20	22	24	25	26	28
ľ	3. 140.	MODEL	Power Rating (mm) Impell Handling Size (mm) Siz																			
ſ	1	SP - 3L++	4.0	6.0	80	80	224	15.5	1500	-	17.6	15.5	14.0	12.4	8.2	5.9	3.5	-		-	-	-
Γ	2	SP-3L++	9.0	12.0	80	80	224	15.5	1800	-	-	-	-	21.7	20.5	19.8	18.8	16.3	13.1	11.3	9.5	5.8
Γ	3	SP - 4LA+	9.0	12.0	100	100	292	18.5	1500	-	36.2	33.9	32.6	31.1	28.2	26.7	25.0	21.5	17.2	14.8	11.9	-
Γ	4	SP - 4L+	10.5	14.0	100	100	292	23.0	1500	-	41.5	39.1	38.0	36.7	33.8	32.0	30.2	26.1	21.5	18.8	16.0	9.9
	5	SP-6LA	16.5	22.0	150	150	296	34.0	1500	69.0	66.6	63.5	61.7	59.6	54.0	51.0	48.0	41.0	33.0	28.5	22.5	-
П	6	SP-6L	19.5	26.0	150	150	296	40.0	1500	_	76,0	73,0	71.0	69.0	64.0	61.0	57,5	50,0	43,5	38,8	33,5	18,0

Note:

- In Engine coupled set bare shaft pump is only in the scope of KBL.
 Performance under standard test conditions and may vary on site conditions.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

VACUUM PUMPS

VACUUM PUMPS

LIQUID RING TYPE

ΚV

FEATURES

Vacuum

Wide Voltage Design

The motor is designed to withstand wide voltage variation which reduces motor burning in case of low/high voltage.

Designed to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

TECHNICAL SPECIFICATION

DV

Up to 600 mm of mercury Up to 600 mm of mercury Up to 162 m³/hr

Air Flow Rate - Up to 55 m³/hr (at mean sea level) (at mean sea level) **Power Rating** 0.75 to 2.2 kW 3.7 to 7.5 kW

(1 to 3 HP) (5 to 10 HP) 180 to 240 Volts (Single Phase) 300 to 440 Volts (Three Phase) 375 to 455 Volts Voltage Range -

(Three Phase) B Class F Class Insulation

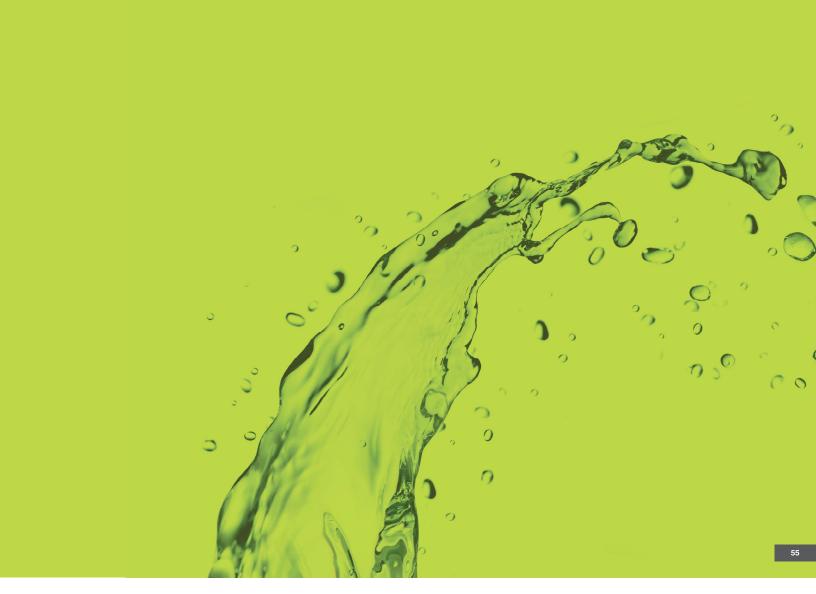
IP44 IP55 Protection

MATERIAL OF CONSTRUCTION

Rotor(Impeller) Stainless Steel Delivery Casing Cast Iron Motor Body Cast Iron Pump Shaft Carbon Steel

- Priming of large pumps
- Evacuation of air from suction pipes and chambers
- Twist drilling machine, removing water from pulp layer, labelling, bottle filling, de-odorising
- Drying, evaporation, distillation, filtration, sterilisation, condensation, degasification, sucking aases
- Extrusion machines

DV Coupled Set



	PERFOR	MANCE C	HART F				PUMPS, AT RA		ED, 50 H	z FREQL	JENCY,				
		Bower	Datina	Dino Si	ze (mm)	Rated	Max Vacuum	Rated		VA	CUUMIN	MM OF	MERCU	RY	
s. ı	No. PUMP MODEL	Fower	naung	ripe 31	ze (IIIIII)	Voltage	Developed	Speed	0	100	200	300	400	500	600
		kW	HP	SUC.	DEL.	(Volts)	(mm of Hg)	(RPM)	All	RFLOW	RATE IN	CUBIC I	METRES	PER HOU	JR
1	1 KV - 20 Monobloc	0.75	1.0	20	20	210/415	650	2700	20.4	18.0	14.5	11.3	8.1	5.1	1.8
2	2 KV - 30 Monobloc	2.2	3.0	32	32	415	660	2840	55.0	46.5	38.0	30.0	21.0	13.0	5.0
3	3 DV - 40 Coupled Set / Bare Pump*	3.7	5.0	40	40	415	635	1450	73.8	65.0	56.0	45.0	34.0	21.0	6.0
	4 DV - 50 Coupled Set / Bare Pump*	7,5	10,0	50	50	415	630	1450	162,0	138.0	113.0	90,0	68.0	43.0	11,0

- Note:

 KV-20 is also available in Single Phase. Performance applicablle for air at NTP based on employment of clear water at 30° C as working fluid.

 *Coupled sets with Energy Efficient IE2 motors.

VERTICAL MULTISTAGE INLINE PUMPS

VERTICAL MULTI STAGE PUMPS

FEATURES

Wide Operating Range with Flatter Characteristics for a Stable Head Range

Minimum variations in efficiency during entire operating range increases the Power Rating utility of pump set for variable conditions. Flatter performance curve ensure Voltage Range wide operating range.

Engineering Polymer Impellers and Diffuser Excellent chemical resistance to most of the acids, bases, chlorides and cleaning agents Excellent hydrolytic stability Excellent long term dimensional Insulation stability for reliable and consistent performance

Keyed Shaft

Positive impeller locking for better life

Wide Voltage Range

The motor is designed to withstand wide voltage variation which reduces motor burning in case of low/high voltage.

Light-weight

Easy handling and easy to integrate in the system

High Efficiency

Low power consumption

CED Coating

CED is the latest coating technology for corrosion resistance that comes with an uniform coating, which provides 5 times more protection over conventional . painting, resulting in longer life. All major CI parts of Kirloskar pumps that come . in contact with water are CED coated.

Cartridge Type Mechanical Seal

Superior quality cartridge type mechanical seal with high quality graphite and hard alloy ensures better heat resistance capacity, zero leakage and lower friction loss. This protects the shaft from wear and tear thus ensuring easy maintenance without opening the pump for a longer life.

TECHNICAL SPECIFICATION

- Up to 181 Metres Discharge Range - Up to 25 m³/hr - 1.1 to 4.5 kW (1.5 to 6 HP) - 180 to 240 Volts (Single Phase)

300 to 440 Volts (KVM 2 m³/hr - 3 phase) 350 to 440 Volts (KVM 4 m3 /hr - 3 phase) 370 to 440 Volts (KVM 10 & 15 m³/hr - 3 phase IE2)

Enriching Lives

- F Class - IP44/ IP55 Protection pH Value - 5 - 8.5

MATERIAL OF CONSTRUCTION

Diffuser & Impeller -High Grade Engineering Polymer Discharge Casing -Cast Iron

Suction Casing Cast Iron Pump shaft Stainless Steel

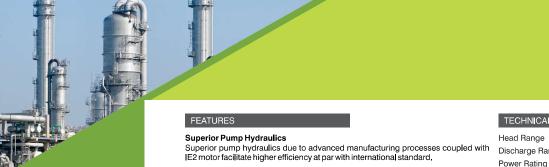
- **RO Plant**
- Pressure boosting and lifting water in apartments and bungalows
- Irrigation
- Firefighting systems and washing systems
- · Air conditioners, cooling system and industrial cleaning

	PERF	ORMAN					ır SERIES, IGLE/THRE						230/41	5 VOL	rs,		
S. No.	PUMP MODEL	Power	Rating		Size nm)	No of	lps	0.28	0.42	0.56	0.69	0.83	0.97	1,11	1.25	1.39	1,53
5, NO.	POWP WODEL	kW	НР	SUC.	DEL.	Stages	m3/hr	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5
- 1	KVM - 2070	1.1	1.5	25	25	10		77	75	70	66	60	53	46	38	29	20
2	KVM - 2085	1.1	1.5	25	25	12		93	89	85	79	71	63	54	44	33	22
3	KVM - 2100	1.5	2.0	25	25	14	Total Head	108	105	100	94	85	76	67	56	44	33
4	KVM - 2115	1.5	2.0	25	25	16	in meters	123	120	115	107	97	86	75	63	50	36
5	KVM - 2130	2.2	3.0	25	25	19		152	147	140	132	121	108	94	80	60	42
6	KVM - 2170	2.2	3.0	25	25	23		181	173	165	154	141	126	110	91	70	45

PERFORMANCE CHART FOR KVM 4 m3/hr SERIES, 2 POLE, AT RATED VOLTAGE OF 230/415 VOLTS, 50 Hz FREQUENCY, SINGLE/THREE PHASE A.C. POWER SUPPLY

Ĭ	S. No.	PUMP MODEL	Power	Rating		Size m)	No of	lps	0.28	0.56	0.83	1.11	1.39	1.67	1.94	2.22	2.50
	S. NO.	POMP MODEL	kW	HP	SUC.	DEL.	Stages	m3/hr	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
I	1	KVM = 4084	2.2	3	32	32	12		93	90	86	81	73	65	53	40	25
ĺ	2	KVM - 4114	3.7	5	32	32	16	Total Head	127	124	120	114	103	88	72	53	35
I	3	KVM - 4122	3.7	5.0	32	32	18	in meters	142	136	130	122	111	96	80	60	40
I	4	KVM - 4136	3.7	5.0	32	32	20		160	154	145	135	123	106	87	66	45

PERFORMANCE CHART FOR KVM 10 m3/hr SERIES, 2 POLE, AT RATED VOLTAGE OF 415 VOLTS, 50 Hz FREQUENCY, THREE PHASE A.C. POWER SUPPLY


S. No.	PUMP MODEL	Power	Rating	Pipe (m	Size ım)	No of	lps	0.56	1.11	1.67	2.22	2.78	3.33	3.89	4.44	5.00
3. 140.	FOMP MODEL	kW	HP	SUC.	DEL.	Stages	m3/hr	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0
1	KVM - 10078	3.7	5.0	42	42	8	Total Head	89.5	86.5	83	79.5	75	70	63	56	48
2	KVM - 10098	4.5	6.0	42	42	10	in meters	114	111	108	103	98	90	82	72	61
3	KVM - 10115	4.5	6.0	42	42	12	III III CCC I 3	138	134	129	123	115	107	98	87	74

PERFORMANCE CHART FOR KVM 15 m3/hr SERIES, 2 POLE, AT RATED VOLTAGE OF 415 VOLTS, 50 Hz FREQUENCY, THREE PHASE A.C. POWER SUPPLY

İ	S. No.	PUMP MODEL	Power	Rating	Pipe (m		No of	lps	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.66	6.94
	J. 140.	FOWIP MIODEE	kW	НР	SUC.	DEL.	Stages	m3/hr	3.0	6.0	9.0	12.0	15.0	18.0	21.0	24.0	25.0
I	1	KVM - 15045	3.7	5.0	65	65	4	Total Head	53.5	52.5	50.5	48	45	40.5	35	29	26
I	2	KVM = 15072	4.5	6.0	65	65	6	in meters	85	82	80	76.5	72	66	59	49	45

Note

- KVM 10 and KVM 15 Series are supplied with IE2 three phase motor as standard scope of supply and also available in IE4 Motor.
- Above KVM 10 & KVM 15 series are Inline models.
- Performance under standard test conditions and may vary on site conditions.
- Performance applicable to liquid of specific gravity 1 and viscosity as of water.

VERTICAL MULTI STAGE INLINE PUMPS

KCIL/KSIL

Cartridge Type Mechanical Seal

Superior quality cartridge type mechanical seal with high quality graphite and hard alloy ensures better heat resistance capacity, zero leakage and lower friction loss. This protects the shaft from wear and tear thus ensuring easy maintenance without opening the pump for a longer life.

 $\stackrel{\mbox{\scriptsize c}}{\mbox{\scriptsize c}}$ Splined shaft made from cold extrusion technology with high surface strength facilitates better life and good axiality.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components.

Suitable for Horizontal Applications

The motor comes with ball bearings which makes it suitable for horizontal installation for water transfer at high heads in residential complex.

High Head Applications

The pump has been designed to deliver large volumes of water for high head applications, helping customers to achieve high turnaround time and productivity.

TECHNICAL SPECIFICATION

Discharge Range

Voltage Range

Protection Insulation pH Value

Altitude Liquid Temperature Range - -20° C to 120° C

Motors

Maximum Operating

- Up to 323 Metres

Enriching Lives

- Up to 110 m³/h - 0.37 to 45 kW

(0.5 to 60 HP) - 370 to 440 Volts (Three Phase)

- IP55 - F Class - 4 to 10

- Up to 1000 metres

- All motors are designed

under IE2 specification.

- 16 bar (KCIL & KSIL-1 to 5 Series) 25 bar (KSIL & KCIL-10 to 90 Series)

MATERIAL OF CONSTRUCTION	

		KCIL	KSIL
Base Plate	-	Cast Iron	Cast Iron
Drainage Plug Assembly	-	Stainless Steel	Stainless Steel
Primary Diffuser	-	Stainless Steel	Stainless Steel
Diffuser with Bearing	-	Stainless Steel	Stainless Steel
Medium Diffuser	-	Stainless Steel	Stainless Steel
Impeller	-	Stainless Steel	Stainless Steel
Final Diffuser	-	Stainless Steel	Stainless Steel
Motor Base	-	Cast Iron	Cast Iron
Vent Plug Assembly	-	Stainless Steel	Stainless Steel
Pump Shaft	-	Stainless Steel	Stainless Steel
Pump Casing (Suc & Del)	-	Cast Iron	Stainless Steel

- Building Industry Booster, Fire fighting, Hydro pneumatic systems, Heating, Ventilation and Air conditioning systems.
- Water Treatment Reverse osmosis systems, softening, Ion exchange, demineralizing systems, distillation systems
- Irrigation Field irrigation (flooding), sprinkler irrigation, drip-feed irrigation.
- Dairy, Food Processing and Beverage Industries Supply of clean water.
- Small Capacity Power Plants Boiler feed and condensate transfer.

	P	ERFORM	MANCE CH		KCIL / K							OF 415 V	OLTS,		
		Powe	r Rating	Pipe Siz	ze (mm)	No				DISC	HARGE IN	m³/hr			
S. No.	Pump Model	. 00		po o	-	of Stages	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
		kW	HP	SUC.	DEL.	Stages				TOTAL	HEAD IN I	WETRES			
1	KSIL/KCIL1-2	0.37	0.5	32	32	2	12	12	12	12	12	11	11	10	10
2	KSIL/KCIL1-3	0.37	0.5	32	32	3	18	18	18	18	17	17	16	15	14
3	KSIL/KCIL1-4	0.37	0.5	32	32	4	24	24	24	23	22	22	21	19	18
4	KSIL/KCIL1-5	0.37	0.5	32	32	5	30	30	30	29	28	27	26	24	22
5	KSIL/KCIL1-6	0.37	0.5	32	32	6	36	36	35	35	34	32	30	28	25
6	KSIL/KCIL1-7	0.37	0.5	32	32	7	42	42	41	41	39	37	35	32	30
7	KSIL/KCIL1-8	0.55	0.75	32	32	8	48	48	47	46	45	43	40	37	34
8	KSIL/KCIL1-9	0.55	0.75	32	32	9	54	54	53	52	50	48	45	41	37
9	KSIL/KCIL1-10	0.55	0.75	32	32	10	60	59	58	57	55	53	50	46	41
10	KSIL/KCIL1-11	0.55	0.75	32	32	11	65	65	64	62	61	58	54	50	45
11	KSIL/KCIL1-12	0.75	1.0	32	32	12	73	72	71	69	67	64	61	55	50
12	KSIL/KCIL1-13	0.75	1.0	32	32	13	78	78	77	75	73	69	65	60	54
13	KSIL/KCIL1-15	0.75	1.0	32	32	15	90	90	88	86	83	79	74	68	61
14	KSIL/KCIL1-17	1.1	1.5	32	32	17	103	102	101	99	95	91	85	79	70
15	KSIL/KCIL1-19	1.1	1.5	32	32	19	115	114	112	109	106	101	94	87	78
16	KSIL/KCIL1-21	1.1	1.5	32	32	21	126	125	123	120	116	110	103	95	85
17	KSIL/KCIL1-23	1.1	1.5	32	32	23	137	136	134	131	126	120	112	103	92
18	KSIL/KCIL1-25	1.5	2.0	32	32	25	153	152	150	147	142	136	128	118	106
19	KSIL/KCIL1-27	1.5	2.0	32	32	27	165	164	162	158	153	146	137	127	114
20	KSIL/KCIL1-30	1.5	2.0	32	32	30	182	181	178	175	169	162	152	140	126
21	KSIL/KCIL1-33	2.2	3.0	32	32	33	203	202	199	195	189	181	170	157	142
22	KSIL/KCIL1-36	2.2	3.0	32	32	36	221	220	217	212	206	197	185	171	154

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	PEI	RFORMA	NCE CH					- 2 SERIES ASE A.C. F		ED VOLTA UPPLY	AGE OF 41	I5 VOLTS,	,	
		Bower	Rating	Pipe Siz	ro (mm)	No				DISCHAR	GE IN m³/hr			
S. No.	Pump Model	Fower	nating	Fipe 3iz	1	of	1.0	1.2	1.6	2.0	2.4	2.8	3.2	3.5
1101		kW	HP	SUC.	DEL.	Stages			T	OTAL HEAD	IN METRI	ES		
1	KSIL/KCIL2-2	0.37	0.50	32	32	2	18	17	16	15	13	12	10	8
2	KSIL/KCIL2-3	0.37	0.50	32	32	3	27	26	24	22	20	18	15	12
3	KSIL/KCIL2-4	0.55	0.75	32	32	4	36	35	33	30	26	24	17	16
4	KSIL/KCIL2-5	0.55	0.75	32	32	5	45	43	40	37	33	30	24	20
5	KSIL/KCIL2-6	0.75	1.00	32	32	6	53	52	50	45	40	36	30	24
6	KSIL/KCIL2-7	0.75	1.00	32	32	7	63	61	57	52	47	41	35	28
7	KSIL/KCIL2-8	1.10	1.50	32	32	8	71	69	65	59	54	47	40	33
8	KSIL/KCIL2-9	1.10	1.50	32	32	9	80	78	73	67	61	54	45	37
9	KSIL/KCIL2-10	1.10	1.50	32	32	10	89	86	81	74	67	59	49	40
10	KSIL/KCIL2-11	1.10	1.50	32	32	11	98	95	89	82	73	64	54	44
11	KSIL/KCIL2-12	1.50	2.00	32	32	12	107	103	97	90	81	71	59	47
12	KSIL/KCIL2-13	1.50	2.00	32	32	13	116	114	106	98	89	78	65	52
13	KSIL/KCIL2-14	1.50	2.00	32	32	14	125	122	118	105	94	84	69	57
14	KSIL/KCIL2-15	1.50	2.00	32	32	15	134	130	123	112	100	90	73	60
15	KSIL/KCIL2-16	2.20	3.00	32	32	16	143	139	131	120	107	96	79	66
16	KSIL/KCIL2-17	2.20	3.00	32	32	17	152	148	139	128	114	102	85	70
17	KSIL/KCIL2-18	2.20	3.00	32	32	18	161	157	148	136	121	108	91	76
18	KSIL/KCIL2-19	2.20	3.00	32	32	19	170	165	156	143	127	113	95	81
19	KSIL/KCIL2-20	2.20	3.00	32	32	20	179	174	164	150	134	119	100	85
20	KSIL/KCIL2-21	2.20	3.00	32	32	21	188	183	172	157	141	124	105	88
21	KSIL/KCIL2-22	2.20	3.00	32	32	22	197	192	180	165	148	130	110	90
22	KSIL/KCIL2-23	3.00	4.00	32	32	23	204	201	188	173	155	137	117	97
23	KSIL/KCIL2-24	3.00	4.00	32	32	24	214	210	197	181	163	144	120	105
24	KSIL/KCIL2-25	3.00	4.00	32	32	25	223	219	205	189	168	151	125	107
25	KSIL/KCIL2-26	3.00	4.00	32	32	26	232	228	214	198	178	158	130	110

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

		PERFOR	RMANCE C	HART FOR 50 HZ F	KCIL / KSI						AGE OF 4	115 VOLT	S,		
		Powe	r Rating	Pipe Siz	ro (mm)	No				DISCH	HARGE IN	m³/hr			
S. No.	Pump Model	Fowe	nating	Fipe 3iz	le (IIIII)	of Stages	1.2	1.6	2.0	2.4	2.8	3.0	3.2	3.6	4.0
		kW	HP	suc.	DEL.	otagoo				TOTAL I	HEAD IN I	METRES			
1	KSIL/KCIL3-2	0.37	0.5	32	32	2	13	12	12	11	11	11	10	8	8
2	KSIL/KCIL3-3	0.37	0.5	32	32	3	19	19	18	17	16	16	15	14	12
3	KSIL/KCIL3-4	0.37	0.5	32	32	4	25	24	23	22	20	19	18	17	14
4	KSIL/KCIL3-5	0.37	0.5	32	32	5	31	31	29	27	25	24	22	20	17
5	KSIL/KCIL3-6	0.55	0.75	32	32	6	37	36	35	33	30	29	28	24	21
6	KSIL/KCIL3-7	0.55	0.75	32	32	7	43	42	40	37	35	33	31	28	24
7	KSIL/KCIL3-8	0.75	1.0	32	32	8	51	48	47	44	41	39	37	33	28
8	KSIL/KCIL3-9	0.75	1.0	32	32	9	56	54	51	48	45	43	40	36	30
9	KSIL/KCIL3-10	0.75	1.0	32	32	10	62	60	57	54	50	48	45	40	33
10	KSIL/KCIL3-11	1.1	1.5	32	32	11	69	66	63	60	56	53	50	44	38
11	KSIL/KCIL3-12	1.1	1.5	32	32	12	75	72	69	65	61	58	55	48	41
12	KSIL/KCIL3-13	1.1	1.5	32	32	13	80	78	74	70	65	62	58	51	44
13	KSIL/KCIL3-15	1.1	1.5	32	32	15	92	89	85	80	73	70	66	58	49
14	KSIL/KCIL3-17	1.5	2.0	32	32	17	107	104	100	94	87	83	79	70	59
15	KSIL/KCIL3-19	1.5	2.0	32	32	19	119	116	111	104	97	93	88	77	65
16	KSIL/KCIL3-21	2.2	3.0	32	32	21	133	129	124	117	109	104	99	88	75
17	KSIL/KCIL3-23	2,2	3.0	32	32	23	146	141	135	128	119	114	108	95	81
18	KSIL/KCIL3-25	2.2	3.0	32	32	25	158	153	146	138	128	123	117	102	87
19	KSIL/KCIL3-27	2.2	3.0	32	32	27	170	164	157	148	138	132	125	110	93
20	KSIL/KCIL3-29	2.2	3.0	32	32	29	182	176	168	159	147	140	133	118	100
21	KSIL/KCIL3-31	3	4.0	32	32	31	197	191	183	173	161	153	146	128	110
22	KSIL/KCIL3-33	3	4.0	32	32	33	210	203	194	183	170	162	152	137	116
23	KSIL/KCIL3-36	3	4.0	32	32	36	228	221	211	200	185	177	168	149	126

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	PERF	ORMAN						ERIES, AT A.C. POW			OF 415 V(OLTS,		
		Power	Rating	Dina Si	ze (mm)	No				DISCHARG	E IN m³/hr			
S. No.	Pump Model	Fower	nating	Fipe 3i.	26 (11111)	of Stages	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0
		kW	HP	SUC.	DEL.	Otages			т	OTAL HEAD	IN METRE	S		
1	KSIL/KCIL4-2	0.37	0.50	32	32	2	19	18	17	15	13	10	8	6
2	KSIL/KCIL4-3	0.55	0.75	32	32	3	28	27	26	24	20	18	14	10
3	KSIL/KCIL4-4	0.75	1.00	32	32	4	38	36	34	32	27	24	18	13
4	KSIL/KCIL4-5	1.10	1.50	32	32	5	47	45	43	40	34	31	23	17
5	KSIL/KCIL4-6	1.10	1.50	32	32	6	56	54	52	48	41	37	28	20
6	KSIL/KCIL4-7	1.50	2.00	32	32	7	66	63	61	56	48	43	34	24
7	KSIL/KCIL4-8	1.50	2.00	32	32	8	74	72	70	64	55	50	38	27
8	KSIL/KCIL4-9	2.20	3.00	32	32	9	86	81	78	72	63	56	44	32
9	KSIL/KCIL4-10	2,20	3.00	32	32	10	96	90	87	81	71	62	50	34
10	KSIL/KCIL4-11	2.20	3.00	32	32	11	105	99	95	88	78	68	53	39
11	KSIL/KCIL4-12	2.20	3.00	32	32	12	114	108	104	95	85	75	57	41
12	KSIL/KCIL4-13	3.00	4.00	32	32	13	123	117	113	103	93	82	63	45
13	KSIL/KCIL4-14	3.00	4.00	32	32	14	136	126	122	112	101	89	69	48
14	KSIL/KCIL4-15	4.00	5.50	32	32	15	142	135	131	120	108	95	73	52
15	KSIL/KCIL4-16	4.00	5.50	32	32	16	152	144	140	129	115	101	78	55
16	KSIL/KCIL4-17	4.00	5.50	32	32	17	163	153	149	137	122	108	83	62
17	KSIL/KCIL4-18	4.00	5.50	32	32	18	175	162	158	145	129	115	89	65
18	KSIL/KCIL4-19	4.00	5.50	32	32	19	183	171	168	153	137	122	95	67
19	KSIL/KCIL4-20	4.00	5.50	32	32	20	192	180	176	161	144	127	99	72
20	KSIL/KCIL4-21	4.00	5.50	32	32	21	203	190	184	169	152	132	103	75
21	KSIL/KCIL4-22	4.00	5.50	32	32	22	211	200	192	178	160	138	108	79

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	P	ERFORM <i>A</i>	NCE CHAR	T FOR KCIL 50 HZ FREQ						GE OF 415	VOLTS,		
		Powe	er Rating	Pipe Siz	ro (mm)	No			DISC	HARGE IN	m³/hr		
S. No.	Pump Model	rowe	naung	Fipe 3iz	ie (iiiii)	of Stages	1	2	3	4	5	6	7
		kW	HP	SUC.	DEL.				TOTAL	HEAD IN M	ETRES		
1	KSIL/KCIL5-2	0.37	0.5	32	32	2	13	12	12	10	9	7	6
2	KSIL/KCIL5-3	0.55	0.75	32	32	3	19	19	18	16	15	12	10
3	KSIL/KCIL5-4	0.55	0.75	32	32	4	26	25	24	22	19	16	14
4	KSIL/KCIL5-5	0.75	1	32	32	5	33	32	30	28	24	22	18
5	KSIL/KCIL5-6	1.1	1.5	32	32	6	40	38	37	34	31	27	23
6	KSIL/KCIL5-7	1.1	1.5	32	32	7	46	45	42	40	36	32	27
7	KSIL/KCIL5-8	1.1	1.5	32	32	8	53	51	48	45	41	36	31
8	KSIL/KCIL5-9	1.5	2	32	32	9	60	59	56	53	48	44	37
9	KSIL/KCIL5-10	1.5	2	32	32	10	67	65	62	59	54	48	41
10	KSJL/KCJL5=11	2.2	3	32	32	11	74	73	70	66	61	54	47
11	KSIL/KCIL5-12	2.2	3	32	32	12	81	79	76	72	66	59	51
12	KSIL/KCIL5-13	2.2	3	32	32	13	88	85	82	78	71	64	55
13	KSIL/KCIL5-14	2.2	3	32	32	14	95	92	89	83	77	69	60
14	KSIL/KCIL5=15	2.2	3	32	32	15	101	99	95	89	82	74	63
15	KSIL/KCIL5=16	2.2	3	32	32	16	108	105	101	95	87	78	68
16	KSIL/KCIL5=18	3	4	32	32	18	122	119	115	109	100	90	78
17	KSIL/KCIL5-20	3	4	32	32	20	135	132	127	120	111	100	87
18	KSIL/KCIL5-22	4	5.5	32	32	22	150	147	142	134	124	112	97
19	KSIL/KCIL5-24	4	5.5	32	32	24	163	160	154	146	135	122	106
20	KSIL/KCIL5-26	4	5.5	32	32	26	176	173	166	157	146	132	115
21	KSIL/KCIL5-29	4	5.5	32	32	29	198	194	188	178	165	149	131

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	PERF	ORMANC						, AT RATED OWER SUPP	VOLTAGE O LY	F 415 VOLTS	5,	
		Power	Doting	Pipe Siz	ro (mm)	N-			DISCHARO	GE IN m³/hr		
S. No.	Pump Model	Power	Hating	Pipe Siz	ze (mm)	No of	2	4	6	8	10	12
		kW	HP	suc.	DEL.	Stages			TOTAL HEAD	IN METRES		
1	KSIL/KCIL10-1	0.37	0.5	42	42	1	10	10	9	8	7	5
2	KSIL/KCIL10-2	0.75	1	42	42	2	20	20	19	18	15	12
3	KSIL/KCIL10-3	1,1	1.5	42	42	3	30	30	29	26	23	18
4	KSIL/KCIL10-4	1.5	2	42	42	4	40	40	40	36	32	26
5	KSIL/KCIL10-5	2,2	3	42	42	5	51	51	50	46	40	33
6	KSIL/KCIL10-6	2.2	3	42	42	6	61	61	59	55	48	39
7	KSIL/KCIL10-7	3.0	4	42	42	7	72	72	70	65	56	46
8	KSIL/KCIL10-8	3.0	4	42	42	8	82	82	80	74	64	53
9	KSIL/KCIL10-9	3.0	4	42	42	9	92	92	89	82	70	59
10	KSIL/KCIL10-10	4.0	5.5	42	42	10	102	102	100	93	80	66
11	KSIL/KCIL10-12	4.0	5.5	42	42	12	122	122	119	110	95	79
12	KSIL/KCIL10-14	5.5	7.5	42	42	14	143	142	140	130	113	94
13	KSIL/KCIL10-16	5.5	7.5	42	42	16	163	163	159	148	128	106
14	KSIL/KCIL10-18	7.5	10	42	42	18	185	184	182	169	147	123
15	KSIL/KCIL10-20	7.5	10	42	42	20	206	204	201	188	164	136
16	KSIL/KCIL10-22	7.5	10	42	42	22	226	226	221	206	181	147

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	PERFORM	MANCE C						S, AT RATE OWER SU		GE OF 415	VOLTS,		
		Power	Rating	Dina Cir	ze (mm)	No			DISC	HARGE IN I	m³/hr		
S. No.	Pump Model	rowei	naung	Fipe 3i	ze (IIIII)	of	3	6	9	12	15	18	21
1101		kW	HP	suc.	DEL.	Stages			TOTAL	HEAD IN M	ETRES		
1	KSIL/KCIL15-1	1.1	1.5	65	65	1	15	13	13	12	11	10	9
2	KSIL/KCIL15-2	2.2	3	65	65	2	28	27	26	25	23	21	18
3	KSIL/KCIL15-3	3	4	65	65	3	42	41	40	38	35	32	28
4	KSIL/KCIL15=4	4	5.5	65	65	4	58	55	55	51	47	43	38
5	KSIL/KCIL15-5	4	5.5	65	65	5	70	68	66	64	58	53	48
6	KSIL/KCIL15-6	5.5	7.5	65	65	6	83	82	80	77	71	64	58
7	KSIL/KCIL15-7	5.5	7.5	65	65	7	98	96	94	89	83	75	65
8	KSIL/KCIL15-8	7.5	10	65	65	8	112	110	108	103	96	86	75
9	KSJL/KCJL15-9	7.5	10	65	65	9	125	123	120	115	108	97	84
10	KSIL/KCIL15-10	11	15	65	65	10	140	138	136	129	120	109	95
11	KSIL/KCIL15-12	11	15	65	65	12	168	165	162	155	142	130	114
12	KSIL/KCIL15-14	11	15	65	65	14	194	192	188	180	166	151	130
13	KSIL/KCIL15-17	15	20	65	65	17	237	234	230	219	205	185	160

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	PERI	FORMAN		T FOR KCIL 50 HZ FREC						GE OF 415	VOLTS,		
		Power	Pating	Pipe Siz	ro (mm)	No			DISC	HARGE IN	n³/hr		
S. No.	Pump Model	1 00001	lating	1 100 012		of	4	8	12	16	20	24	28
NO.		kW	HP	SUC.	DEL.	Stages			TOTAL	HEAD IN M	ETRES		
1	KSIL/KCIL20-1	1.1	1.5	65	65	1	13	13	13	12	11	9	7
2	KSIL/KCIL20-2	2.2	3	65	65	2	28	28	27	25	23	19	15
3	KSIL/KCIL20-3	4.0	5	65	65	3	43	43	42	39	36	30	23
4	KSIL/KCIL20-4	5.5	7.5	65	65	4	58	57	56	53	48	41	32
5	KSIL/KCIL20-5	5.5	7.5	65	65	5	73	72	70	66	60	52	40
6	KSIL/KCIL20-6	7.5	10	65	65	6	87	84	83	80	72	62	49
7	KSIL/KCIL20-7	7.5	10	65	65	7	102	100	97	93	84	72	57
8	KSIL/KCIL20-8	11.0	15	65	65	8	117	116	113	107	96	85	67
9	KSIL/KCIL20-10	15.0	20	65	65	10	146	144	140	132	120	105	83
10	KSIL/KCIL20-12	15.0	20	65	65	12	175	174	169	161	144	127	101
11	KSIL/KCIL20-14	15.0	20	65	65	14	204	202	197	187	168	147	117
12	KSIL/KCIL20-17	18.5	25	65	65	17	249	247	241	229	210	181	144

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	PE	RFORMA					SERIES, AT ASE A.C. PO		LTAGE OF 4 [.] LY	15 VOLTS,		
		Dawer	Detina	Dina Cir	(mm)	No			DISCHARG	GE IN m³/hr		
S. No.	Pump Model	Power	nating	Pipe Siz	ze (mm)	of Stages	15	20	25	32	35	40
		kW	HP	suc.	DEL.	Olages			TOTAL HEAD	IN METRES		
1	KCIL32-1-1	1.5	2.0	74	74	1	15	14	13	10	8	5
2	KCIL32-1	2.2	3.0	74	74	1	18	17	16	13	12	9
3	KC L32-2-2	3.0	4.0	74	74	2	31	30	27	21	18	12
4	KCIL32-2	4.0	5.5	74	74	2	37	36	32	27	25	20
5	KCIL32-3-2	5.5	7.5	74	74	3	50	47	44	37	31	23
6	KCIL32-3	5.5	7.5	74	74	3	56	53	49	44	38	30
7	KCIL32-4-2	7.5	10.0	74	74	4	69	65	60	51	44	32
8	KCIL32-4	7.5	10.0	74	74	4	75	71	66	59	51	40
9	KCIL32-5-2	11.0	15.0	74	74	5	89	85	78	65	59	45
10	KC L32-5	11.0	15.0	74	74	5	95	90	84	71	65	52
11	KCIL32-6-2	11.0	15.0	74	74	6	107	102	95	80	71	55
12	KCIL32-6	11.0	15.0	74	74	6	113	108	100	86	78	62
13	KCIL32-7-2	15.0	20.0	74	74	7	127	121	112	95	85	67
14	KCIL32=7	15.0	20.0	74	74	7	133	126	118	101	92	74
15	KCIL32-8-2	15.0	20.0	74	74	8	145	138	128	108	98	77
16	KCIL32-8	15.0	20.0	74	74	8	151	144	134	115	104	83
17	KC L32-9-2	18.5	25.0	74	74	9	165	158	147	124	112	89
18	KCIL32-9	18.5	25.0	74	74	9	171	163	152	131	119	96
19	KC L32-10-2	18.5	25.0	74	74	10	184	175	163	138	125	99
20	KCIL32-10	18.5	25.0	74	74	10	190	181	169	145	133	106
21	KCIL32-11-2	22.0	30.0	74	74	11	203	194	181	154	140	112
22	KCIL32-11	22.0	30.0	74	74	11	209	200	187	161	147	118
23	KCIL32-12-2	22.0	30.0	74	74	12	222	212	197	168	152	121
24	KC L32-12	22.0	30.0	74	74	12	227	217	203	176	160	128
25	KCIL32-13-2	30.0	40.0	74	74	13	244	233	218	187	169	136
26	KC L32-13	30.0	40.0	74	74	13	250	239	224	193	177	145
27	KCIL32-14-2	30.0	40.0	74	74	14	263	251	234	201	183	146
28	KCIL32-14	30.0	40.0	74	74	14	269	258	241	207	188	156

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

PERFORMANCE CHART FOR KCIL PUMPSETS - 45 SERIES, AT RATED VOLTAGE OF 415 VOLTS, 50 HZ FREQUENCY, THREE PHASE A.C. POWER SUPPLY														
S. No.	Pump Model	Dawes Dating Bins			ro (mm)	No of	DISCHARGE IN m³/hr							
		Power Rating		Pipe Size (mm)			25	30	35	40	45	50	55	
		kW	HP	suc.	DEL.	Stages	TOTAL HEAD IN METRES							
1	KC I L45-1-1	3.0	4.0	80	80	1	20	20	18	17	15	13	11	
2	KCIL45-1	4.0	5.5	80	80	1	24	23	22	21	19	18	15	
3	KCIL45-2-2	5.5	7.5	80	80	2	41	39	37	34	31	27	22	
4	KCIL45-2	7.5	10.0	80	80	2	49	47	45	42	39	35	31	
5	KCIL45-3-2	11.0	15.0	80	80	3	66	64	61	57	52	46	40	
6	KCIL45-3	11.0	15.0	80	80	3	74	71	68	64	60	54	48	
7	KCIL45-4-2	15.0	20.0	80	80	4	91	88	84	79	72	65	56	
8	KCIL45-4	15.0	20.0	80	80	4	99	95	91	86	80	73	64	
9	KC L45-5-2	18.5	25.0	80	80	5	118	113	107	101	93	84	73	
10	KCIL45-5	18.5	25.0	80	80	5	122	120	115	108	100	92	81	
11	KCIL45-6-2	22.0	30.0	80	80	6	142	137	131	122	113	103	90	
12	KCIL45-6	22.0	30.0	80	80	6	149	144	138	130	121	111	98	
13	KCIL45-7-2	30.0	40.0	80	80	7	168	163	156	147	135	123	109	
14	KCIL45-7	30.0	40.0	80	80	7	176	171	163	155	144	132	116	
15	KCIL45=8-2	30.0	40.0	80	80	8	193	187	179	168	155	142	126	
16	KCIL45-8	30.0	40.0	80	80	8	200	194	187	176	164	149	134	
17	KC L45-9-2	30.0	40.0	80	80	9	217	211	202	189	174	159	142	
18	KCIL45-9	30.0	40.0	80	80	9	226	219	210	199	185	170	151	
19	KCIL45-10-2	37.0	50.0	80	80	10	242	236	225	212	196	179	159	
20	KCIL45-10	37.0	50.0	80	80	10	251	243	233	220	205	187	166	
21	KCIL45-11-2	45.0	60.0	80	80	11	273	264	253	238	222	201	179	
22	KCIL45-11	45.0	60.0	80	80	11	281	272	261	246	230	209	187	
23	KCIL45-12-2	45.0	60.0	80	80	12	298	289	276	261	242	220	195	
24	KCIL45-12	45.0	60.0	80	80	12	306	296	284	268	251	229	204	
25	KCIL45-13-2	45.0	60.0	80	80	13	323	313	300	283	263	239	212	

Note:

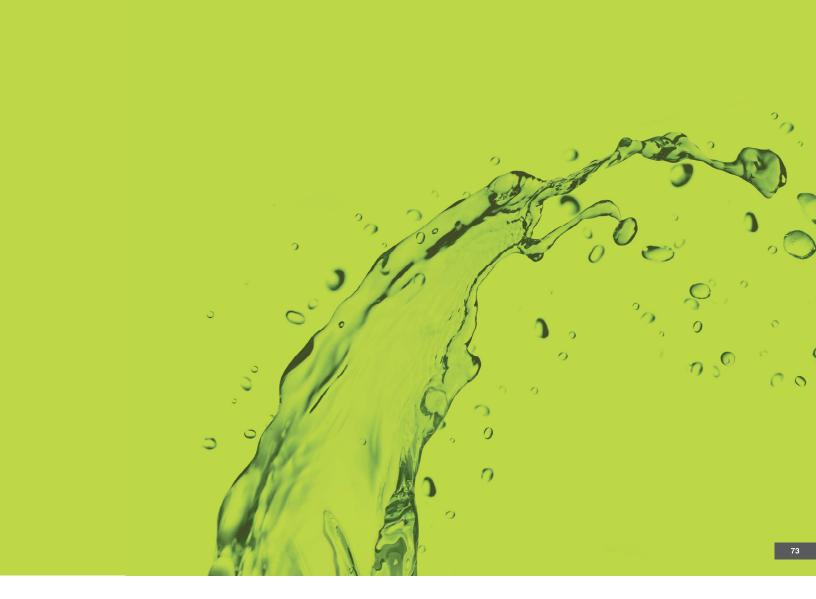
- Performance under standard test conditions and may vary on site conditions.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

PERFORMANCE CHART FOR KCIL PUMPSETS - 64 SERIES, AT RATED VOLTAGE OF 415 VOLTS, 50 HZ FREQUENCY, THREE PHASE A.C. POWER SUPPLY													
S. No.	Pump Model	Power	Dating	Pipe Size (mm)		No	DISCHARGE IN m³/hr						
		Power nating		i ipo oize (iiiii)		of	30	40	50	64	70	80	
		kW	HP	SUC.	DEL.	Stages	TOTAL HEAD IN METRES						
1	KCIL64-1-1	4.0	5.5	100	100	1	20	19	18	14	12	9	
2	KCIL64-1	5.5	7.5	100	100	1	27	26	24	21	20	17	
3	KCIL64-2-2	7.5	10.0	100	100	2	40	38	36	29	26	19	
4	KCIL64-2-1	11.0	15.0	100	100	2	48	46	43	37	35	29	
5	KCIL64-2	11.0	15.0	100	100	2	55	53	50	44	42	36	
6	KCIL64-3-2	15.0	20.0	100	100	3	68	66	60	53	49	40	
7	KCIL64-3-1	15.0	20.0	100	100	3	76	72	68	60	56	47	
8	KCIL64-3	18.5	25.0	100	100	3	84	80	76	68	64	56	
9	KCIL64-4-2	18.5	25.0	100	100	4	96	93	87	76	68	59	
10	KCIL64-4-1	22.0	30.0	100	100	4	104	100	95	84	79	68	
11	KCIL64-4	22.0	30.0	100	100	4	112	107	102	91	86	75	
12	KCIL64-5-2	30.0	40.0	100	100	5	126	122	115	101	94	81	
13	KCIL64-5-1	30.0	40.0	100	100	5	134	129	122	109	102	88	
14	KCIL64-5	30.0	40.0	100	100	5	141	136	129	116	109	96	
15	KCIL64-6-2	30.0	40.0	100	100	6	154	148	140	124	115	99	
16	KCIL64-6-1	37.0	50.0	100	100	6	162	156	148	132	124	108	
17	KCIL64-6	37.0	50.0	100	100	6	170	163	155	139	131	116	
18	KCIL64-7-2	37.0	50.0	100	100	7	182	176	166	147	138	119	
19	KCIL64-7-1	37.0	50.0	100	100	7	190	183	173	155	145	126	
20	KCIL64-7	45.0	60.0	100	100	7	202	194	184	165	155	136	
21	KCIL64-8-2	45.0	60.0	100	100	8	214	207	196	174	163	140	
22	KCIL64-8-1	45.0	60.0	100	100	8	222	214	203	181	170	148	

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.



	Р	ERFORM		IART FOR K 50 HZ FREC						OF 415 VO	LTS,		
		Power	Rating	Pipe Siz	ze (mm)	No			DISC	HARGE IN	n³/hr		
S. No.	Pump Model	1 00001	lating	1 100 012	1	of	50	60	70	80	90	100	110
NO.		kW	HP	SUC.	DEL.	Stages			TOTAL	HEAD IN M	ETRES		
1	KCIL90-1-1	5.5	7.5	100	100	1	21	20	18	16	14	11	7
2	KCIL90-1	7.5	10.0	100	100	1	26	25	24	22	20	18	14
3	KCIL90-2-2	11.0	15.0	100	100	2	43	41	38	35	30	24	17
4	KCIL90-2	15.0	20.0	100	100	2	55	52	49	46	43	38	32
5	KCIL90-3-2	18.5	25.0	100	100	3	72	68	64	58	52	44	35
6	KCIL90-3	22.0	30.0	100	100	3	85	80	76	71	65	59	51
7	KCIL90-4-2	30.0	40.0	100	100	4	102	97	91	85	76	66	54
8	KCIL90-4	30.0	40.0	100	100	4	114	109	103	96	89	80	69.5
9	KCIL90-5-2	37.0	50.0	100	100	5	131	125	118	109	99	87	72
10	KCIL90-5	37.0	50.0	100	100	5	142	136	129	121	111	101	87
11	KCIL90-6-2	45.0	60.0	100	100	6	161	154	145	135	123	108	92
12	KCIL90-6	45.0	60.0	100	100	6	175	166	156	146	135	123	108

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

INDUSTRIAL PRODUCT RANGE

STAINLESS STEEL MONOBLOC PUMP

HORIZONTAL MULTISTAGE PUMP

FEATURES

High Efficiency and Energy Saving Design

Innovative design manufactured at state-of-the-art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Compact Reliable and Silent

Dynamically balanced rotating parts, superior quality bearings and SS fabricated impellers with compact design ensures reliable and silent operations

High Head Applications

The pump has been designed for high head applications, helping customers to achieve high turnaround time and productivity

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

TECHNICAL SPECIFICATION

Head Range - Up to 55 Meters
Discharge Range - Up to 12 m3/h

Power Rating - 0.37 to 2.2 kW (0.5 to 3 HP)
Voltage Range - 220 Volts±10% and 415 Volts±10%

Enriching Lives

Insulation - F Class
Protection - IP55
Max Liquid Temp - 85° C

MATERIAL OF CONSTRUCTION

- Industrial and domestic water pressure boosting
- Feed water application in RO plants
- High pressure liquid circulation and pumping in industries
- Air/conditioning and cooling system
- Car washing

	PE	RFORM	ANCE C	HART 50 HZ	FOR A	AGNE UENC	S 2 SERI Y, SINGL	ES PUN .E/THRI	/IP, 2 EE P	POLE, A	AT RA	TED VO	OLTAGI SUPPL	E OF 22 Y'	20/415	VOLT	S,		
Sr.	Pump Model	Powe	r Rating	9	Curi	ent	Pipe	Size (m	ım)					DISCH.	ARGE				
No.	Fullip Model	kW	HP		Ø	3Ø	Suc	D	el	Q (m³/	/h)	0	0.6	1.2	1.8	2	.4	3.0	3.6
1	AGNES 2-20	0.37	0.5	. 2	2.4	1.1	25	2	5			18.0	16.0	15.0	13.0	12	2.0	10.0	8.0
2	AGNES 2-30	0.37	0.5	. 2	2.8	1,3	25	2	5	Ê	- [:	27.0	24.0	22.0	20.0	18	3.0	16.0	12.0
3	AGNES 2-40	0.55	0.75	5 (3.3	1.5	25	2	5	Head (m)	:	35.0	33.0	30.0	26.0	24	4.0	21,0	16.0
4	AGNES 2-50	0.55	0.75	5 (3.6	1.9	25	2	5	Ŧ		45.0	40.0	37.0	33.0	30	0.0	24.0	19.0
5	AGNES 2-60	0.75	1.0	4	1.5	2.1	25	2	5			53.0	50.0	45.0	40.0	36	6.0	30.0	23.0
	PE	RFORM					S 4 SERI CY, SINGL								20/415	VOLT	rs,		
Sr.	Model Pump	Power	Rating	Cı	ırrent		Pipe Siz	ze (mm)				DI	SCHA	RGE				
No.		kW	HP	10	1Ø 3Ø Su		Suc	Del	Q	(m³/h)	0	1	2	3	4	1	5	6	7
1	AGNES 4-20	0.55	0.75	3.5		1.9	32	25			18.0	17.0	16.0	15.	0 13	.0	12.0	10.0	8.0
2	AGNES 4-30	0.55	0.75	3.5		1.9	32	25		Ē	28.0	27.0	25.0	23.	0 21	.0	19.0	16.0	13.0
3	AGNES 4-40	0.75	1.0	4.5	: :	2.1	32	25		Head (m)	38.0	36.0	34.0	32.	0 28	.0 2	26.0	22.0	17.0
4	AGNES 4-50	1,1	1.5	6.2	: :	2,7	32	25		ž	48.0	46.0	43,0	40.	0 36	.0	33,0	28.0	21.0
5	AGNES 4-60	1.1	1,5	6.2	: :	2.7	32	25			58.0	55.0	52,0	48.	0 43	.0 3	39.0	33.0	26.0
		PERFOR	MANCE	CHAF 50 Hz	RT FO FREC	R AGI	NES 10 S CY, SING	ERIES . LE/THR	, 2P(EE F	DLE, AT PHASE /	RATE A.C. P	D VOL	TAGE (DF 220, _Y	415 V	OLTS,			
Sr.	Pump Model	Power I		Curi		100	Size(mn	-						HARGI					
No.		kW	HP	1Ø	3Ø	Suc		Q (m	1³/h)	0	2	4	6	7	8	9	10		12
1	AGNES 10-10	0.75	1,0	2.9	1.4	38		_		10.1	9.8	9.6	9.1	8.7	8.2	7.7	6.8		-
2	AGNES 10-20	0,75	1.0	4.4	1,9	38		_ (3		19,5	19	18,7	17,9	17.1	16,3	15,3	-		
3	AGNES 10-30	1.1	1.5	6.3	2.6	38	32	Head		29.3	28.6	28.3	27.1	26.3	24.9	23.4	21.	4 19.3	16.9
4	AGNES 10-40	1.5	2.0	8.2	3.3	38	32	_ ±		38.1	39.6	39.8	38.6	37.6	35.9	33.9	31.	2 28.2	24.6
5	AGNES 10-50	2.2	3.0	10.0	4.1	38	32			49.9	49.2	49.1	47.8	46.4	44.4	42.2	39.	5 35.9	31.1

Note:

- Performance under standard test conditions and may vary on site conditions.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

STAINLESS STEEL MONOBLOC PUMPSETS

FEATURES

Stainless Steel - Wetted Components

All wetted components are made of Stainless Steel which made it suitable for handling various liquids.

Mechanical Seal

Superior quality of mechanical seal ensures zero leakage, lower friction loss, protects from wearing of shaft, thus resulting in easy maintenance and longer life.

High Efficiency and Energy Saving Design Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Superior hydraulics due to advanced manufacturing processes provides efficiency at par with international standard.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Lightweight and Compact Design

Constructed with special grade engineering materials, the pump sports a compact design for ease of handling and installation.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

Designed to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a head lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

TECHNICAL SPECIFICATION

Head Range - Up to 50 Metres Discharge Range - Up to 18 LPS

Power Rating - 0.75 to 7.5 kW(1 to 10 HP)

Voltage Range - 350 to 440 Volts (Three Phase) Insulation - F Class

- IP44 / IP55 Protection pH Value - 5 to 9

- -10°C to 85°C (Up to 3 HP) Liquid Temperature -20°C to 100°C

(5 HP and above)

Maximum Ambient Temperature 40°C

MATERIAL OF CONSTRUCTION

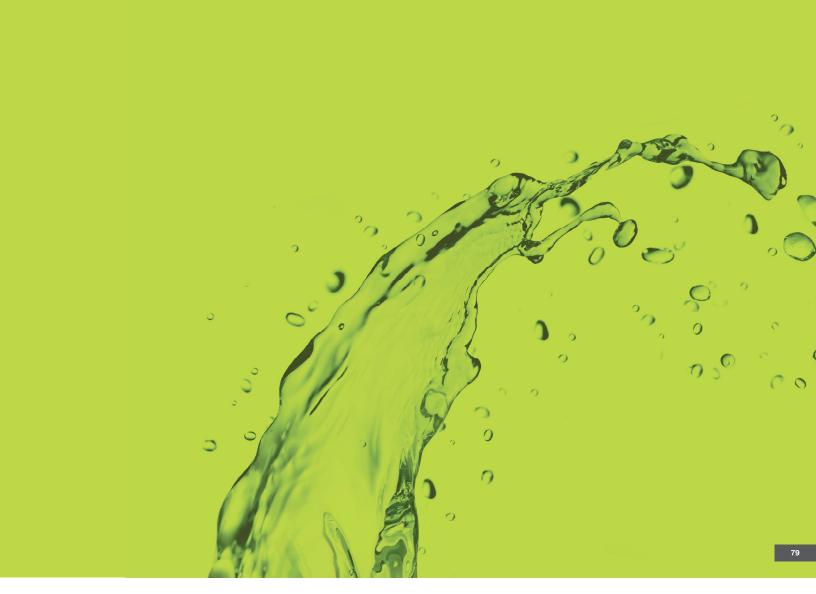
Impeller Stainless Steel Delivery Casing Stainless Steel Cast Iron Motor Body Pump Shaft Mechanical Seal

Stainless Steel Carbon vs Ceramic (Up to 3 HP)

Carbon vs Silicon Carbide (5 HP and above)

Guarding Plate - Stainless Steel Rubber Parts - NBR

- Pharmaceutical industries
- Food processing
- Demineralising plant
- Air conditioning and refrigeration systems
- Diary and beverages



	PE	RFORM	ANCE C			MB SERIES						AT RAT	ED VOLI	TAGE,			
		Мс	del	Pipe	Size	Rated				T	OTAL H	EAD IN	METER	RS			
Sr. No.	PUMP MODEL	Rat	ing	(m	ım)	Voltage	10	12	14	16	18	20	22	24	26	28	30
		kW	HP	SUC.	DEL.	(Volts)				ISCHA	RGE IN	LITRE	S PER	SECON	D		
1	KSMB 129	0.75	1.0	32	25	415	-	-	2.5	2.4	2.3	2.1	1.8	1.5	1.1	0.6	-
2	KSMB 116	0.75	1.0	40	32	415	4.2	3.3	2.1	0.5			-	-	-	-	-
3	KSMB 1.516	1.1	1.5	50	32	415	-	5.6	4.8	3.5	-	-	-	-	-	-	-
4	KSMB 220	1.5	2.0	50	32	415	ı	ı	6.5	5.6	4.8	3.8	1.2	-	-	1	1
5	KSMB 324	2.2	3.0	50	32	415	-	-	-	5.5	4.7	3.9	2.8	0.7	-	-	-
6	KSMB 328	2,2	3.0	40	32	415	-	-	6.9	6.3	5.8	5.2	4.4	3.4	2.3	0.5	-
7	KSMB 532+	3.7	5.0	65	40	415	-	-	13.9	13.2	12.3	11.3	10.2	8.9	7.4	5.0	-
							28	30	32	34	36	38	40	42	44	46	50
8	KSMB 548+	3.7	5.0	50	32	415	7.0	6.5	5.5	5.7	5.5	5.0	4,3	2,5	-	-	-
9	KSMB 834+	5,5	7 . 5	65	40	415	11.5	10.8	9.5	8.0	6.5		-	-	-	-	-
10	KSMB 1051+	7.5	10.0	65	40	415	-	-	-	-	18.0	17.8	17.0	15.6	13.5	10.9	4.0

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

INDUSTRIAL PRODUCT RANGE

SEWAGE DE-WATERING SUBMERSIBLE PUMPS

SEWAGE DE-WATERING SUBMERSIBLE PUMPS

ETERNA CW+

ETERNA CW

FEATURES

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum Discharge Range efficiency at lower energy consumption resulting in significant cost Power Rating savings.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components pH Value so that pump can be serviced even at remote locations by semi-skilled technicians.

Robust Construction

Heavy duty construction made from graded cast iron, carbon + silicon carbide mechanical seal makes the pump suitable for sewage and sludge.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is

TECHNICAL SPECIFICATION

Head Range - Up to 70 Metres - Up to 4920 LPM

- 0.37 to 15 kW (0.5 to 20 HP)

Voltage Range - 300 to 440 Volts - 3 Ph(For CW+ Models)

- 380 to 440 Volts - 3 Ph(For CW Models) - 6.5 to 7.5

Maximum Density - < 1050 kg/m³

- IP68 Protection

Consistency of Medium - < 1.2 x 10 3 kg/m 3 Maximum Ambient Temperature - 40 °C Insulation - B/ E Class

MATERIAL OF CONSTRUCTION

- Cast Iron Delivery Casing - Cast Iron Motor Body - Cast Iron

Pump Shaft - Carbon Steel - CW / Stainless Steel - CW+

- Dewatering from basements, multi-storeys, shopping malls, godowns
- Construction site
- Dewatering foundation, trenches and pits
- Flood water handling

	PE	RFOR	MANCE	E CHART F		NA CW+ / REQUENC							PS, AT	RATED	VOLT	AGE,			
		Po	wer	Pipe Size	Rated	Rated	Max.				TC	TAL H	EAD IN	METE	RS				Minimum
S. No.	PUMP MODEL	Ra	ting	DEL	Voltage	Speed	Solid Size	4	6	8	10	12	14	16	18	19	22	24	Submerged From Bottom
		kW	HP	(mm)	(Volts)	(RPM)	(mm)			D	ISCHA	RGE IN	LITRE	S PER	мімит	E			(mm)
1	ETERNA 370 CW+	0.37	0.5	50	415	2800	18	171	144	114	66	-	-	-	-	-	-	-	410
2	ETERNA 750 CW+	0.75	1	50	415	2800	22	-	312	264	204	120				-	-	-	450
3	ETERNA 1100 CW+	1.1	1.5	50	415	2800	24	-	366	312	252	180	84	-	-	-	-	-	460
4	ETERNA 1500 CW+	396	357	312	270	222	144	96	-	-	490								
5	4 ETERNA 1500 CW+ 1.5 2 50 415 2840 22 396 357 312 270 222 144 96															500			
6	ETERNA 3700 CW+	3.7	5	65	415	2900	35	-	ı	-	•	-	960	870	720	600	360	150	625
7	ETERNA 5500 CW+	5.5	7.5	80	415	2900	35	-	1560	1500	1410	1272	1140	990	810	750	450	180	660
								4	6	8	10	12	14	16	18	20	22	24	-
8	ETERNA 7500 CW	7.5	10	150	415	1440	45	3800	3750	3250	2750	2000	1000	-	-	ı	-	-	920
9	ETERNA 11000 CW 4PL	-11	15	150	380	1440	45	-	ı	4920	4200	3600	2700	1600	280	1	-	1	970
10	ETERNA 15000 CW 4PL	15	20	150	380	1440	45	-	4800	4520	4230	3950	3620	3120	2140	400	-	-	1020
								12	15	18	21	24	27	30	33	36	39	40	-
11	ETERNA 7500 CW 2P	7.5	10	65	380	2900	25	1500	1400	1300	1210	1120	1025	935	780	550	270	-	780
12	ETERNA 11000 CW 4P	-11	15	100	380	1440	35	-	2680	2350	1970	1500	630	-	-		-	-	925
13	ETERNA 15000 CW 4P	15	20	100	380	1440	35	-	-	2950	2680	2380	2080	1650	1150	680	150	-	990
								25	30	35	40	45	50	55	60	65	70	75	-
14	ETERNA 11000 CW 2P	11	15	65	380	25	1060	980	850	650	400	185	-	-	-	-	-	920	
15	ETERNA 15000 CW 2P	15	20	65	380	2900	25	-	-	-	-	-	1290	950	600	230	40	-	935

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

CWC

CUTTER PUMP

CWC

FEATURES

Special Cutter

Equipped with a effective and reliable grinder system which grinds solids into small pieces so that they can be drawn away through discharge pipes of a relatively small diameter.

Water Tight Cable Connection

Hermetically sealed polyurethane-filled, stainless steel cable plug connection to ensure no liquid entry into the motor.

Specially Designed Lifting Handle

 $\label{thm:constraints} \textbf{Ensure proper lifting irrespective of installation/motor position.}$

Stainless Steel Clamp

Easy and quick dismantling of pump casing without the use of any special tool that enables 180 degree rotation of the pump casing. Easily serviceable, suitable for both temporary and permanent installation and can either be installed on auto coupling system or can stand freely at the bottom of the pit.

TECHNICAL SPECIFICATION

 Head Range
 Up to 39 Meters

 Discharge Range
 Up to 365 LPM

 Power Rating
 1.2 to 4 kW

 (1.6 to 5.5 HP)

 Voltage Range
 415 Volts ± 10%

 Insulation
 F Class

Protection - F Cla

Protection - IP68

Operating temperature - 40°C

- Waste water with discharge from water closets
- Sewage from restaurants / hotels / camping sites etc
- Effluents from abattoirs
- Effluents & waste from waste water or effluent treatment plants.
- Sewage treatment in communities or area where no sewer system is available

	PERFORM <i>i</i>	ANCE CHA	RT FOR C	WC SERIES, THREE PHA				LTAGE, 50	HZ FREQU	UENCY,		
		Madel	Detina		то	TAL HEAD	IN METE	RS				
Sr. No.	Pump Model	Model	Rating	Pipe Size DEL (mm)	Rated Voltage (Volts)	RPM	6	9	12	15	18	21
		kW	HP			DISCHAF	RGE IN LIT	TRES PER	MINUTE			
1	ETERNA 1200 CWC	1.2	1.6	40	415	2850	270	235	180	135	80	-
2	ETERNA 1500 CWC	1.5	2.0	40	415	2850	295	258	220	175	130	80
							6	15	30	33	36	39

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SEWAGE DE-WATERING SUBMERSIBLE PUMPS

FEATURES

Automatic On - Off Switch

Pre-fitted float switch ensure that the pump start and stop automatically as per need. This protects the pump from dry running and burning.

Ready to Use

No installation required, just drop it in the tank, and it is ready to use.

Corrosion Free

Stainless steel body and other rust free parts prevent corrosion.

TOP - Thermal Overload Protector

The pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects of fault current

TECHNICAL SPECIFICATION

 Head Range
 - Up to 12 Metres

 Discharge Range
 - Up to 330 LPM

 Power Rating
 - 0.75 to 1.8 kW

 (1 to 2.5 HP)

Voltage Range - 180 to 240 Volts (Single Phase)

Protection - IP68

Insulation - SW - F Class / BW - B Class

Cable Length 2 9.5 meters pH Value 2 4 - 10 Max. Liquid density 4 1.2 \times 10° kg/m³ Max. liquid temperature 5 +40° C

MATERIAL OF CONSTRUCTION

		sw	BW
Impeller	-	Noryl	Cast Iron
Delivery Casing	-	Stainless Steel	Cast Iron
Motor Body	-	Stainless Steel	Stainless Steel
Pump Shaft	-	Stainless Steel	Stainless Steel
Cutter	-	-	40 Cr Steel

- Removing stagnant water from basement / underground parkings / garages
- Draining accumulated storm water during monsoons
- Emptying water-tanks and pits for cleaning
- Waste water from kitchens, hotels, clubs
- Surplus water from sumps

		PE	ERFOR	RMANCE C			ID BW P				GE, 50 H	z FREQI	UENCY,			
	Power Rating Del. Rated Rated															Min. Sub.
S. No.	Pump Model	Rat	ing	Del. Size (mm)	Voltage (Volts)	3	4	5	6	7	8	9	10	12	Solid Size	From Bottom
		kW	НР	()	(Volts)				(mm)	(mm)						
1	750SW	0.75	1.0	40	220	180	150	120	95	60	-	-	-	-	15	370
2	1000SW	0.93	1.25	40	220	-	-	200	180	150	120	90	50	-	15	390
3	1300BW	1.3	1.75	50	220	-	-	-	270	240	204	162	132	60	10	530
4	1800BW	1.8	2.5	65	220	-	-	-	330	300	240	180	120	-	10	630

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

KPP

KIRLOSKAR SWIMMING POOL PUMPS

FEATURES

Thermal Overload Protection

Built in Thermal Overload Protection for Motor

Pre Filter Basket

Built in pre filter basket for easy cleaning of swimming pool water and to separate hair and lint. Large wrench on lid for easy removal for cleaning and positive sealing

Quiet Operation

Self Priming

No Need to Prime. Can start delivering instantaneously.

Lightweight and Compact design

Constructed with special grade engineering materials such as Glass Filled Polypropylene for strength, compact designs for ease of handling and installation.

Mechanical Seal

True Carbon face seal for reliability and trouble free operation. Easy to replace and maintain.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

TECHNICAL SPECIFICATION

Head Range - Up to 17.9 Metres
Discharge Range - Up to 500 LPM

Motor Rating - 0.55 to 2.2 kW (0.75 to 3.0 HP)

 $\begin{tabular}{lll} Voltage Range & - 240 \ Volts \pm 10\% \\ Motor Insulation & - F \ Class \\ Maximum Suction \ Lift - Up to 3.5 \ M \end{tabular}$

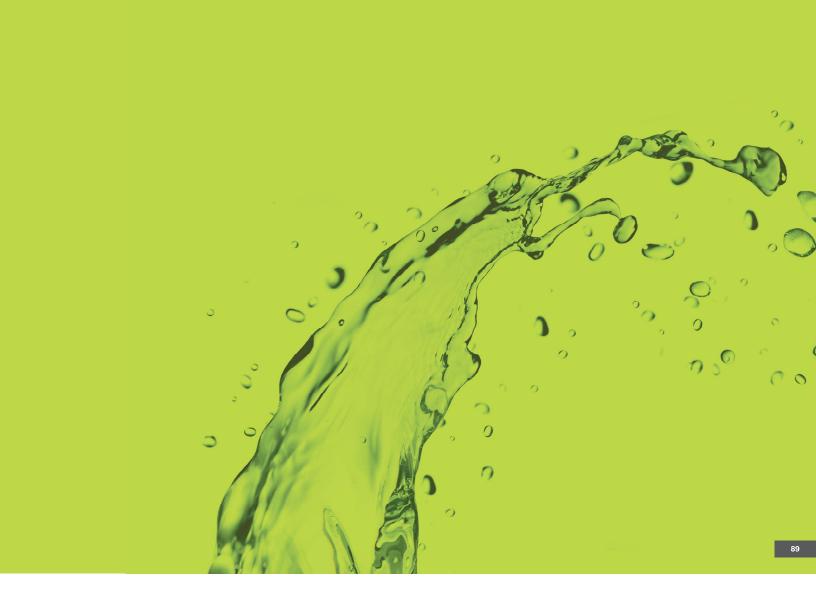
MATERIAL OF CONSTRUCTION

Parts Material Pump Body - Glass filled polypropylene Pump Shaft - Stainless steel Impeller - Poly Phenylene oxide Diffuser - Glass filled polypropylene Mechanical Seal - Carbon Vs Ceramic

APPLICATIONS

Motor Body

Water circulation and filtration systems such as in


- Aluminium

- Hot Springs
- Swimming pools including Suction Sweeping
- Spa
- Water treatment systems
- Landscape Fountains

	PER	FORMA	NCE CI	HART O		SERIES'-2 P NGLE PHASI				VOLT	AGE, 5	OHZ FF	REQUE	NCY,			
		Po	wer	Pipe	Size	Rated					DISC	HARG	ìΕ				
Sr. No.	Pump Model	Rat	ting	(m	ım)	Voltage	m³/h	3	6	9	12	15	18	21	24	27	30
	Wodel	kW	HP	Suc	Del	(Volts)	l/min	50	100	150	200	250	300	350	400	450	500
1	KPP - 550	0.55	0.75	50	50	220		9.7	9.0	8.0	6.0	3.2	0.5	-	-	-	-
2	KPP - 800	0.75	1.0	50	50	220	Ê	10.8	10,3	9,2	7.0	4.5	1.5	-	-		-
3	KPP - 1100	1,10	1,5	50	50	220	НЕАD (14.8	14.2	13,2	12.0	10.3	8.0	4.8	-	-	-
4	KPP - 1600	1.50	2.0	50	50	220	뿐	16.8	16.3	15,5	14.5	13.5	12.0	9.6	7.0	3.5	-
5	KPP - 2200	2.20	3.0	50	50	220		17.9	17.5	16.7	15.9	14.7	13.4	11.6	9.5	7.0	3.5

- Performance under standard test conditions and may vary on site conditions.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

AGRICULTURE PRODUCT RANGE

MONOBLOC PUMPS Single Phase

KDS

SINGLE PHASE MONOBLOC PUMPS

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variation which reduces motor burning in case of low/high voltage.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

TOP - Thermal Overload Protector

The pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects of fault Protection

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is

Designed to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

TECHNICAL SPECIFICATION

Head Range Power Rating

- Up to 52 Metres Discharge Range - Up to 28 LPS

0.37 to 3.7 kW (0.5 to 5.0 HP)

Voltage Range

180 to 240 Volts (Single Phase) 120 to 220 Volts (Low Voltage) 230 to 400 Volts ("P" Series)

Insulation - B / F Class IP44

MATERIAL OF CONSTRUCTION

Impeller Cast Iron/Noryl Delivery Casing - Cast Iron Motor Body - Cast Iron Pump Shaft - Carbon Steel Sealing - Mechanical Seal

- Gardening and small farm irrigation
- Lawn sprinklers
- Water supply for high rise buildings
- Domestic and community water supply
- · Water transfer and circulation

			PE	RFOR	MANC	E CHART FO 50 Hz FR									RATED	VOLT	AGE,					
		Po	wer	Pipe	Size	Rated							TOTAL	L HEAD	IN ME	TRES						
S.N.	PUMP MODEL	Rat			nm)	Voltage	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
		kW	HP	SUC.	DEL.	(Volts)						DISCH	IARGE	IN LIT	RES P	ER SE	COND					
1	KDS - 0510+	0.37	0.50	50	40	210	-	3.4	2.6	1.0	-	-	-	-	-	-	-	-	-	-	-	-
2	KDS = 112	0.75	1.00	50	50	210	-	6.9	5.5	3.9	2.0	-			-		-		-	-	-	-
3	KDS-116++	0.75	1.00	50	40	210	-	5.4	5.0	4.6	4.2	3.6	3.0	1.9	-	•	•	·	·	-	-	-
4	KDS = 116++	0.75	1.00	50	50	210	-	5.4	5.0	4.6	4.2	3.6	3.0	1.9	-	٠	٠	٠	٠	•	-	-
5	KDS - 123+	0.75	1.00	32	25	210	-	-	-	4.1	3.6	3.2	2.7	2.2	1.7	0.9	-	٠	•	-	-	-
6	KDS = 128+	0.75	1.00	32	25	210	-	-	-	-	1.9	1.85	1.8	1.7	1.6	1.4	1.1	0.8	0.4	-	-	-
7	KDS = 128+	0.75	1.00	50	40	210	-	-	-	-	1.9	1.85	1.8	1.7	1.6	1.4	1.1	0.8	0.4	-	-	-
8	KDS - 128+	0.75	1.00	40	40	210	-	-	-	-	1.9	1.85	1.8	1.7	1.6	1.4	1.1	0.8	0.4	-	-	-
9	KDS = 134+	0.75	1.00	25	25	210	-	-	-	-	-	-	-	2.1	1.9	1.7	1.5	1.3	1.0	0.7	-	-
10	KDS - 1.514	1.10	1.50	65	50	210	-	-	8.5	7.1	5.7	3.0	-	-	-	-	-	-	-	-	-	-
11	KDS - 1.514++	1.10	1.50	50	50	210	-	-	8.5	7.1	5.7	3.0	-	-	-	-	-	-	-	-	-	-
12	KDS - 1.522++	1.10	1.50	50	40	210	-	-	6.3	5.9	5.5	5.0	4.5	3.9	3.1	1.8	-	-	-	-	-	-
13	KDS - 1.525+	1.10	1.50	50	40	210	-	2.6	2.55	2.5	2.45	2.4	2.3	2.2	2.1	2.0	1.8	1.6	1.3	0.4	-	-
14	KDS = 211N	1.50	2.00	80	80	230	14.3	12.7	10.7	8.0	-	-	-	-	-	-	-	-	-	-	-	-
15	KDS - 216M	1.50	2.00	80	80	230	-	-	11.0	10.1	8.8	7.1	4.0	-	-	-	-	-	-	-	-	-
16	KDS = 216++	1.50	2.00	65	50	230	-	-	11.0	10.1	8.8	7.1	4.0	-	-	-	-	-	-	-	-	-
17	KDS - 222	1.50	2.00	65	50	220	-	-	-	8.4	8.0	7.5	6.7	5.7	4.2	2.0	-	-	-	-	-	-
18	KDS = 225++	1.50	2.00	50	50	230	-	-	5.3	5.1	4.9	4.7	4.5	4.2	3.9	3.5	2.8	-	-	-	-	-
19	KDS - 225++	1.50	2.00	50	40	230	-	-	-	-	6.3	6.1	5.9	5.6	5.2	4.8	4.2	3.0	-	-	-	-
20	KDS = 235+	1.50	2.00	50	40	230	-	-	4.3	4.2	4.1	4.0	3.9	3.7	3.5	3.3	3.0	2.9	2.3	2.0	1.3	0.5
21	KDS - 312	2.20	3.00	100	100	230	20.0	17.5	14.5	10.5	-	-	-	-	-	-	-	-	-	-	-	-
22	KDS - 314+	2.20	3.00	100	100	230	-	19.2	17.9	16.2	14.0	10.5	-	-	-	-	-	-	-	-	-	-
23	KDS = 314+	2.20	3.00	80	80	230	-	19.2	17.9	16.2	14.0	10.5	-	-	-	-	-	-	-	-	-	-
24	KDS - 318++	2.20	3.00	80	65	230	-	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-
25	KDS = 318++	2.20	3.00	65	50	230	-	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-
26	KDS - 318+	2.20	3.00	80	80	230	-	-	13.4	12.6	11.7	10.7	9.2	7.5	4.5	-	-	-	-	-	-	-
27	KDS = 325++	2.20	3.00	65	50	230	-	-	-	9.2	8.8	8.4	7.9	7.4	7.0	6.4	5.8	4.9	-	-	-	-
28	KDS - 335++	2.20	3.00	50	40	230	-	-	-	-	5.7	5.5	5.4	5.2	5.0	4.8	4.5	4.3	3.9	3.5	3.0	2.3
29	KDS = 515+	3.70	5.00	100	100	230	-	-	-	28.0	24.0	19.0	12.5	-	-	-	-	-	-	-	-	-
30	KDS - 520+	3.70	5.00	80	80	230	-	23.8	23.0	22.1	21.0	19.6	17.9	15.8	13.5	11.0	-	-	-	-	-	-
31	KDS = 527+	3.70	5.00	80	65	230	-	-	-	-	-	-	14.3	13.5	12.6	11.6	10.4	9.1	6.8	-	-	-
							16	18	20	22	24	26	28	30	32	34	36	38	40	44	48	52
32	KDS - 1.540+	1.10	1.50	32	25	230	-	-	-	2.0	1.9	1.7	1.6	1.45	1.3	1,1	0.9	0.6	-	-	-	-
33	KDS = 246	1.50	2.00	32	25	210	-	-	-	-	-	-	-	3.2	2.9	2.7	2.5	2.2	1.7	0.5	-	-
34	KDS = 538+	3.70	5.00	65	50	230	-	8.4	8.3	8.2	8.1	7.9	7.7	7.5	7.1	6.6	5.8	5.0	4.0	-	-	-
35	KDS = 550++	3.70	5.00	50	40	230	-	-	-	-	-	-	-	-	-	-	4.1	3.9	3.7	3.3	2.7	2.0

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

	Р	ERFORM	MANCE C			LV' SERIES NCY , SING						T RATE	D VOL	TAGE,				
		Bower	Rating	Dino Si	ze (mm)	Rated					TOTA	L HEAD	IN MI	TERS				
S. No.	PUMP MODEL	Fower	nating	ripe 3i	ze (IIIII)	Voltage	4	6	8	10	12	14	16	18	20	22	24	26
		kW	HP	SUC.	DEL.	(Volts)				DISCH	IARGE	IN LIT	RES P	ER SE	COND			
1	1 KDS-112 LV 0.75 1.0 50 50 160 - 6.3 5.0 3.1																	
2	2 KDS-113 LPLV 0.75 1.0 50 50 200 7.0 5.7 4.2 2.1																	
3	3 KDS-116 LV 0.75 1.0 50 40 160 4.4 3.9 3.4 2.7																	
4	KDS - 128 LV	0.75	1.0	40	40	160	-	-			-	2.05	1.85	1.65	1.45	1.2	0.9	0.6
5	KDS - 1.514+ LV	1.1	1.5	65	50	160	٠	8.3	7.4	6.4	5.0	2.8	·	-	-	-	-	-
6	KDS - 1.514 LV	1.1	1.5	50	50	160	ı	8.3	7.4	6.4	5.0	2.8	ı	-	-	•	-	•
7	KDS - 1.514++L	1.1	1.5	65	50	160	ı	8.3	7.4	6.4	5.0	2.8	·	-	-	-	-	-
8	KDS - 1.514++L	1.1	1.5	50	50	160	ı	8.3	7.4	6.4	5.0	2,8	ı	-	-	-	-	-
9	KDS - 212N LV	1.5	2.0	80	80	200	٠	-	14.2	11.8	9.0	-	•	-	-	-	-	-
10	KDS - 216LV+	1,5	2,0	65	50	200	٠	-	10,0	9,0	7,9	6,5	3,5	-	-	-	-	-
11	KDS - 216LV	1.5	2.0	80	65	200	١		10.0	9.0	7.9	6.5	3.5	-	-	-	-	-
12	KDS - 222 LV	1,5	2,0	65	50	200	•	-		8.4	8,0	7,5	6.7	5.7	4.2	2,0		-
13	KDS - 312 LV	2.2	3.0	100	100	200	20.0	17.0	14.0	10.0	-	-	-	-	-	-	-	-

- Note:

 LV Denotes Low Voltage

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

		PERFOR	RMANCE			S-P' SERIES ENCY , SIN						ATED \	OLTAG	E,			
		B	Datie	Div. Oi	()	Rated				Т	OTAL H	EAD IN	METER	S			
S. No.	PUMP MODEL	Power	Rating	Pipe Si	ze (mm)	Voltage	6	8	10	12	14	16	18	20	22	24	26
		kW	HP	SUC.	DEL.	(Volts)				DISCHA	RGEIN	LITRE	S PER S	ECOND)		
1	KDS - 112 P	0.75	1.0	50	50	240	6.5	5.4	4.0	2.0	-	·		-			-
2	KDS - 113 LP	0.75	1.0	50	50	240	-	6.5	5.3	3.5	1.5	١	1	•	•	ì	-
3	KDS - 116+ P	0.75	1.0	50	50	5.1	4.5	3.9	3.1	2.0	ı	•	•	ı	-		
4	4 KDS - 1.516 LP 1.1 1.5 65 50 240 - - 8.3 7.0 5.2 2.8 - - - - 5 KDS - 1.525 + P 1.1 1.5 50 40 240 2.20 2.15 2.05 2.00 1.90 1.85 1.75 1.6 1.3 0.9															ì	-
5	KDS - 1.525+ P	1.1															
6	KDS - 213N	1.5	2.0	80	80	240	15.2	13	10.0	6.0	-	١	1	•	•	ì	-
7	KDS - 214LP	1.5	2.0	80	80	240	14.0	12.0	10.0	7.5	-	·	1	•	•	ı	-
8	KDS - 216LP	1.5	2.0	80	65	240	-	9.8	8.3	6.8	5.0	2.0	-	-	-	-	-
9	KDS - 216A	1.5	2.0	65	50	240	-	9.0	8.0	6.8	5.1	2.8	-	-	-	-	-
10	KDS - 216+ P	1.5	2.0	65	50	240	-	10.0	9.1	7.9	6.2	3.4	-	-	-	-	-
11	KDS - 222P	1.5	2.0	65	50	240	-	8.2	7.8	7.0	6.2	5.3	4.0	1.2	-	-	-
12	KDS - 225+ P	1.5	2.0	50	40	240	-	-	-	-	4.35	4.05	3.75	3.45	3.1	2.5	-
13	KDS - 312 P	2.2	3.0	100	100	240	13.7	10.2	6.0		-	-		-	-		-
14	KDS - 314+ P	2.2	3.0	100	100	240	17.0	15.3	13.5	11.2	7.0	-		-	-	-	-
15	KDS - 325++ P	2.2	3.0	65	50	240	-				-	7.5	6.8	6.0	5.3	4.5	3.5
16	KDS - 527+ P	3.7	5.0	80	65	240	_	-	-	-	13.8	12.9	12.0	11.1	10.2	9.2	7.6

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SINGLE PHASE MONOBLOC PUMPS

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variation which reduces motor burning in case of low/high voltage.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

TECHNICAL SPECIFICATION

Head Range - Up to 19 Metres
Discharge Range - Up to 16 LPS

Power Rating - 0.37 to 1.5 kW (0.5 to 2.0 HP)

Voltage Range - 120 to 220 Volts

(Single Phase Low Voltage)
180 to 240 Volts

(Single Phase)
Insulation - B / F Class
Protection - IP44

MATERIAL OF CONSTRUCTION

Impeller - Cast Iron
Delivery Casing - Cast Iron
Motor Body - Cast Iron
Pump Shaft - Carbon Steel

APPLICATIONS

· Gardening and small farm irrigation

- Lawn sprinklers
- Construction site
- · Domestic and community water supply
- Water transfer and circulation

			Pi	ERFORM		HART FOR K 50 Hz FREQ									ED VO	LTAGE	,					
		D	Datina	Dina Cir	()	Rated							TOTA	L HEAD) IN M	ETERS						
S. No.	PUMP MODEL	Power	Rating	Pipe Si	ze (mm)	Voltage	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
		kW	HP	SUC.	DEL.																	
1	KAM - OLV	0.37	0.50	25	25	5 200 1.8 1.6 1.4 1.2 1.0 0.8 0.5 0.3															0.1	
2	KAM - 05	0.50	0.75	40	40	200	-		-	-		4.8	4.0	3.2	2.4	0.9				-		-
3	KAM - 11	0.75	1.00	80	80	200	16.0	14.5	13.2	11.5	9.7	6.5	-							-		-
4	KAM - 11 LV	0.75	1.00	80	80	160	16.0	14.5	13.2	11.5	9.7	6.5	-	-	-	-	-	-	1	-		-
5	KAM - 1.512	1.10	1.50	80	80	230	15.5	14.7	13.8	12.9	11.8	10.6	9.2	7.0	4.0		-			-		-
6	KAM - 15 LV	1.10	1.50	80	80	200	-	-	٠	15.3	14.3	13.0	11.8	10.5	9.0	7.3	5.0			-		-
7	KAM - 213	1.50	2.00	80	80	240	-	16.0	15.2	14.2	13.0	11.5	10.0	8.2	6.0	-	-		-	-	-	-

- Note:

 LV Denotes Low Voltage

 KAM-05 is Also Available With Extended Shaft.

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SINGLE PHASE MONOBLOC PUMPS

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variation which reduces motor burning in case of low/high voltage.

Designed to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life, All major CI parts of Kirloskar pumps coming in contact with the water are CED

Shielded Ball Bearing
The pumps are fitted with shielded ball bearing which results in low noise level and so no external lubrication is required throughout the life cycle.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

TECHNICAL SPECIFICATION

Up to 26 Metres - Up to 4.7 LPS Capacity Power Rating 0.37 to 0.55 kW

(0.5 to 0.75 HP) 180 to 240 Volts (Single phase) Voltage Range

except Hasti Pumps 160 to 240 Volts (Single phase)

for Hasti Pumps

- B Class Insulation Protection - IP44

MATERIAL OF CONSTRUCTION

- Cast Iron for DC-5M Pumps Impeller Noryl for rest of DC, Pamba Puzha

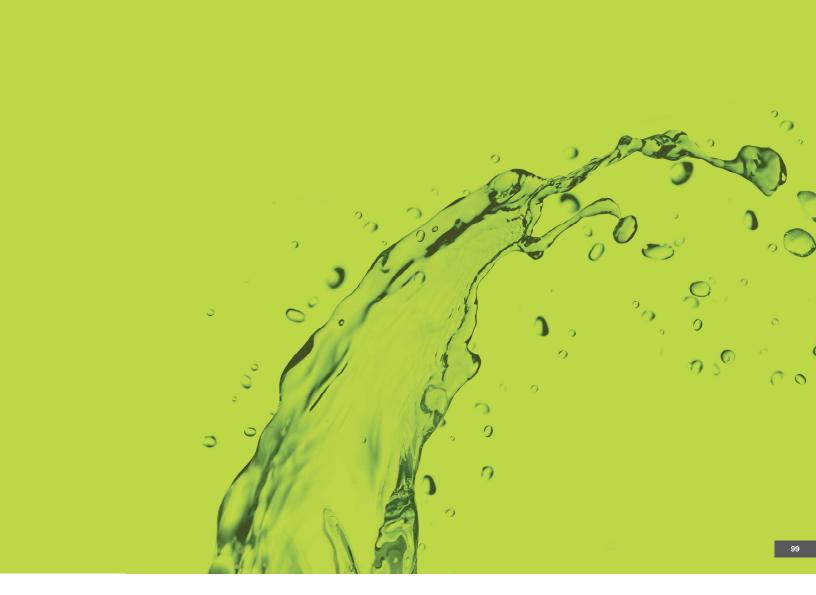
and Hasti Pump

Delivery Casing Cast Iron

Motor Body Cast Iron (Aluminium for Pamba Puzha and Hasti 0520N)

Pump shaft - Carbon Steel

- Domestic and community water supply
- Gardening and small farm irrigation
- Lawn sprinklers
- Fountains
- Water transfer and circulation


	PERFORMA	ANCE CH	HART FO			MBA PUZHA ENCY,SINGL						UMPS.	, AT RA	TED V	OLTAG	iΕ,			
	. PUMP MODEL	Power Rating		Pipe Size (mm)		Voltage	TOTAL HEAD IN METERS												
S. No.							8	9	10.5	12	13.5	15	16.5	18	20	22	24	26	
		kW	HP	SUC.	DEL.	(Volts)	DISCHARGE IN LITRES PER SECOND												
1	HASTI - 514+LV	0.37	0.5	40	40	200	4.15	3.85	3.40	2.90	2.20	1.20	-	-	-	-	-	-	
2	DC - 0M	0,37	0,5	25	25	210	-	1,50	1,30	1.10	0.87	0,60		-	-	-	-	-	
3	DC - 1M	0.37	0.5	25	25	210	-	2.00	1.83	1.63	1.35	1.08	0.77	0.45	-	-	-	-	
4	DC - 1M	0.37	0.5	40	40	210	2.37	2.20	1.95	1.70	1.44	1.14	0.83	0.45	-	-	-	-	
5	PAMBA PUZHA	0.37	0.5	25	25	220	-	1.90	1.80	1.60	1.40	1.10	0.80	0.40	-	-	-	-	
6	DC - 3M	0,37	0,5	25	25	210	-	-	-	1,95	1,73	1.5	1,23	0.9	0.4	-	-	-	
7	HASTI - 0520N	0.37	0.5	25	25	200	-	ı	-	-	1.90	1.70	1.45	1.15	0.55	-	-	-	
8	DC - 4M	0.55	0.75	25	25	210	-	-	-	-	1.57	1.5	1.4	1.3	1.16	1.0	0.8	0.4	
9	DC-5M	0.55	0.75	40	40	200	-	4.7	3.8	1.8	-	-	-	-	-	-	-	-	

- Note:

 LV Denotes Low Voltage

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

DOMESTIC PRODUCT RANGE

MINI SERIES
SELF PRIMING PUMPS

MINI RANGE

СННОТИ

MINI 50C

JALRAAJ ULTRA CHHOTU STAR ULTRA JALRAAJ - 1 ULTRA

FEATURES

High Suction Lift

The pump has suction lift capacity of up to 7.5 metres with high head, facilitating pumping of water at high volumes for a variety of applications.

Cathodic Electro Deposition (CED) Coating

CED is the latest coating technology for corrosion resistance with a uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

TOP - Thermal Overload Protector

The pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects of fault

Handle to Enhance Grip and Portability

A handle attached to the pump allows user to carry the pump anywhere, adding to its portability and convenience of use.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components ensures that the pump can be serviced even at remote locations by semi-skilled technicians.

Shielded Ball Bearing

The low noise pumps are fitted with shielded ball bearing; so, no external lubrication is required throughout the life cycle.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of the art, plant ensures optimum efficiency and lower energy consumption resulting in significant cost savings.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained,

TECHNICAL SPECIFICATION

REGENERATIVE PUMPS

Head Range Up to 58 Metres Discharge Range Up to 4800 LPH

Power Rating

Up to 0.37 to 1.1 kW (0.5 to 1.5 HP) Voltage Range 180 to 240 Volts

(For CHOTTU)

180 to 260 Volts

(For Ultra Series, MINI 30C, 40C and 50C)

- Water supply to over head tanks in bungalows
- Gardens/fountains
- Feed water to RO plants
- Domestic water supply
- Construction site
- Home pressure boosting
- Car Washing
- Lawn sprinklers

	PE	RFOF	AMAN	ICE C	HAR	FOR MI						LE, A1 VER S			OLTA	GE,	50 Hz	FRE	QUE	NCY,				
		Power		Pipe Size		Rated	TOTAL HEAD IN METERS																	
S. No.		Rating (mm)		Voltage	3	6	9	10	12	14	15	18	20	21	22	24	25	26	28	30	32	34		
140,		kW	HP	SUC.	DEL	(Volts)								DISC	HARG	E IN L	ITRES	PER F	IOUR					
1	снноти	0.37	0.5	25	25	220	-	1980	1692	1620	1440	1296	1224	1008	792	756	702	504	396	360	-	-	-	-
2	MINI 30C	0.37	0.5	25	25	220	-	3182	2836	2772	2545	2318	2182	1863	1673	1527	1454	1236	1091	1000	727	-	-	-
						10	12	14	18	20	22	24	26	28	30	32	34	38	40	42	50	54	58	
3	MINI 40C/40C ES**	0.75	1	25	25	230	3010	2800	2650	2340	2160	2016	1872	1764	1620	1512	1368	1224	936	790	-	-	-	-
4	MINI 50C	0.75	1	25	25	230	2900	2898	2880	2808	2754	2700	2628	2520	2376	2196	1980	1800	1512	1368	1224	520	-	-

	PER	FORM	IANCI			OR ULTRA								RATE	o vor.	TAGE,				
S.		Pov		Pipe		Rated	TOTAL HEAD IN METRES													
No.	Pump Model	Rat	ating (mm)		(/ ronage		6	10	14	18	22	26	28	30	32	33	34	38	40	
NO.		kW	HP	SUC.	DEL.	(Volts)	DISCHARGE IN LITRES PER HOUR													
1	Jalraaj Ultra	0.37	0.5	25	25	220	1800	1440	1150	935	720	430	-	-	-	-	-	-	-	
2	Chhotu Star Ultra	0.75	1	25	25	220	2880	2520	2200	1870	1585	1150	940	720	500	-	-	-	-	
3	Jalraaj 1 Ultra	0.75	1	25	25	220	3300	2990	2660	2300	1980	1670	1365	1300	-	-	-	-	-	

- Note:

 ** ES Extended Shaft.

 MINI 30C and MINI 50C are also available in three phase.

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

MINI RANGE

AARNA, ANAYA & RIAN

FEATURES

Cathodic Electro Deposition (CED) Coating

CED is the latest coating technology for corrosion resistance with a uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Advanced Electrical Design

Lesser current for same output (compared to any other similar products)

Wide Voltage Range Operability

The motor is designed to withstand wide voltage variation from 180 to 260 volts and reduces chances of motor burning due to low/high voltage.

Lightweight and Compact Design

It allows users to carry the pump anywhere with ease, adding to its portability and convenience of use.

High Suction Lift

The pump has a suction lift capacity of up to 7.5 meters.

Enhanced Safety Features

All electrical parts of the pump are covered, which makes it safer to use.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

TOP - Thermal Overload Protector
The pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects

Shielded Ball Bearing
The pumps are fitted with shielded ball bearings, which results in low noise level and so no external lubrication is required throughout the life cycle.

TECHNICAL SPECIFICATION

			_
	AARN	A - II/ ANAYA - II/ RIAN - II	AARNA - I/ ANAYA - I/ RIAN
Head Range	-	6 to 21 Meters	6 to 30 Meters
Capacity Range	-	1980 to 680 LPH	2700 to 650 LPH
Power Rating	-	0.37 kW / 0.5 HP	0.75 kW / 1.0 HF
Phase	-	Single	Single
Voltage Range	-	180 to 260 Volts	180 to 260 Volts
Insulation	-	B CLASS	B CLASS

MATERIAL OF CONSTRUCTION

Impeller	-	Brass
Delivery Casing	-	Cast Iron
Motor Body	-	Aluminium
Pump Shaft	-	Carbon Steel
Cover NDE	-	Aluminium
Seal	-	Carbon Vs Ceramic

APPLICATIONS

- · Water supply to overhead tanks in bungalows
- Gardens / Fountains
- Feedwater to RO plants
- Domestic water supply
- Construction sites

Car washing · Lawn sprinklers

	PERFORMANCE CHART OF AARNA MINI RANGE PUMPS, AT RATED VOLTAGE, 50 Hz FREQUENCY, SINGLE PHASE A.C. POWER SUPPLY																
	Pump Model	Pov	wer	Pipe	Size	Rated	TOTAL HEAD IN METERS										
S. No.		Rating		(m	m)	Voltage	6	10	14	18	21	24	26	28	30		
		kW	HP	SUC.	DEL	(Volts)		DI	SCHA	RGE II	N LITR	ES PE	R HOL	JR			
1	AARNA - II	0.37	0.5	25	25	220	1980	1615	1290	1005	680	-	-	-	-		
2	AARNA - I	0.75	1.0	25	25	220	2700	2305	2015	1765	1620	1450	1190	935	650		
PERFORMANCE CHART OF ANAYA MINI RANGE PUMPS, AT RATED VOLTAGE, 50 Hz FREQUENCY, SINGLE PHASE A.C. POWER SUPPLY																	
S.	Pump Model		wer		Size m)	Rated Voltage	TOTAL HEAD IN METERS 6 10 14 18 21 24 26 28 30										
No.		Rating		· , ,			6	10	14	18	21	24	26	28	30		
		kW	HP	SUC.	DEL	(Volts)	DISCHARGE IN LITRES PER HOUR 1980 1615 1290 1005 680										
1	ANAYA - II	0.37	0.5	25	25	220		1615			680	-	-	-	-		
2	ANAYA - I	0.75	1.0	25	25	220	2700	2305	2015	1765	1620	1450	1190	935	650		
		PERF				OF RIAN ENCY, SIN								AGE,			
		Por	wer	Pipe	Size	Rated			TO	TAL HE	EAD IN	METE	RS				
S. No.	Pump Model	Rat	ing	(m	m)	Voltage	6	10	14	18	21	24	26	28	30		
		kW	HP	SUC.	DEL	(Volts)		DI	SCHA	RGE II	N LITR	ES PE	R HOL	JR			
1	RIAN - II	0.37	0.5	25	25	220	1980	1615	1290	1005	680	-	-	-	-		
2	RIAN - I	0.75	1.0	25	25	220	2700	2305	2015	1765	1620	1450	1190	935	650		

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

JALHANSA II / JALHANSA I

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Wide Voltage Range

The motor is designed to withstand wide voltage variation and reduces chances of motor burning due to low/high voltage.

Cathodic Electro Deposition (CED) Coating

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. Hydraulic parts of Kirloskar pumps are CED coated

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained,

High Grade Insulation

Robust design to withstand higher temperatures reducing the chances of motor burning and ensures the reliability, safety and enhanced life.

TOP - Thermal Overload Protector

The pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects of fault current

Shielded Ball Bearing

For Domestic Applications

The pumps are fitted with shielded ball bearings, which results in low noise level and so no external lubrication is required throughout the life cycle.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

High Suction Lift

The pump has suction lift capacity up to 7.5 meters with high head, allowing to pump water at high volumes for a variety of applications.

Enhanced Safety

All electrical parts of the pump are covered, which makes it safer to use.

TECHNICAL SPECIFICATION

Head Range - Up to 55 Meters Capacity Range - Up to 4300 LPH

Power Rating - 0.37 to 0.75 kW/ 0.5 to 1.0 HP

Phase - Single / Three

(Only for JALNAYAK Three Phase Model)
Voltage Range - 180 to 260 Volts (Single Phase)

300 to 440 Volts (Three Phase)
(for JALNAYAK Three Phase Model)

Insulation - B CLASS / F CLASS (Gold Series)

MATERIAL OF CONSTRUCTION

Impeller - Brass

Delivery Casing - Cast Iron

Motor Body - Aluminium

Pump Shaft - Carbon Steel

Seal - Carbon Vs Ceramic

APPLICATIONS

- · Gardens and fountains
- Feed water to RO plants
- · Domestic water supply
- · Water supply to overhead tanks in bungalows
- · Construction sites
- · Car washing
- Lawn sprinklers

107

	ERFORMANCE CH T RATED VOLTAGE											PLY							BR	ON:	ZE	
		Pov	wer	Pipe	Size	Rated					-	TOTAL	HEAD	IN M	ETERS							
S.	Pump Model	Rat	ing	(m	m)	Voltage	6	10	14	18	22	26	28	30	32	34	36	40	41	45	48	50
140.		kW	HP	SUC.	DEL	(Volts)					DISC	HARG	E IN L	TRES	PER F	IOUR						
1	JALHANSA II	0.37	0.5	25	25	220	2050	1725	1440	1115	790	500	-	-	-	-	-	-	-	-	-	-
2	JALDAKSH	0.75	1.0	25	25	220	3000	2735	2450	2200	1945	1655	1550	1400	1300	1150	1005	750	-	-	-	-
3	JALHANSA I	0.75	1.0	25	25	220	3100	2845	2555	2300	2050	1765	1620	1510	1365	1220	1115	850	-	-	-	-
	ERFORMANCE CH T RATED VOLTAGE											PLY							SII	_VE	R	
s.			wer	Pipe		Rated						TOTAL	HEAD	IN M	ETERS							
No.	Pump Model	Rat	ing	(m		Voltage (Volts)	6	10	14	18	22	26	28	30	32	34	36	40	41	45	48	50
		kW	HP	SUC.		` '						HARG		ITRES	PER F	IOUR						
1	JALHANSA II	0.37	0.5	25	25	220	2050		1445		860	570	400	-	-	-	-	-	-	-	-	-
2	JALSENA II	0.37	0.5	25	25	220	2500		1765		1050	685	500	-	-	-	-	-	-	-	-	-
3	JALDAKSH	0.75	1.0	25	25	220	3300		2700		2090	1800			1370	1225	1080	760	-	-	-	-
4	JALHANSA I	0.75	1.0	25	25	220	3200	2935	2665	_	2160	1870		1620	1475	1330	1220	950	-	-	-	-
5	JALSENA I	0.75	1.0	25	25	220	3250	2985	2730	2445	2160	1910	1765	1620	1510	1365	1220	970	900	-	-	-
	ERFORMANCE CH T RATED VOLTAGE											PLY							G	OLI	כ	
		Pov	wer	Pipe	Size	Rated							TOTAL	. HEAD	IN M	ETERS	;					
S. No.	Pump Model	Rat	ing	(m	m)	Voltage	6	10	14	18	22	26	28	30	32	34	36	40	45	48	50	55
		kW	HP	SUC.	DEL	(Volts)						DISC	HARG	E IN L	ITRES	PER F	IOUR					
1	JALSENA II	0.37	0.5	25	25	220	2600	2230	1890	1545	1185	825	650	-	-	-	-	-	-	-	-	-
2	JALNAYAK II	0.37	0.5	25	25	220	2650	2300	1980	1650	1330	970	820	660	-	-		-	-	-	-	-
3	JALHASTI II	0.37	0.5	25	25	220	2900	2630	2340	2050	1800	1510	1370	1225	1080	935	820	-		-		-
4	JALTARA II	0.37	0.5	25	25	220	3000	2700	2410	2160	1870	1585	1440	1295	1150	1010	850	-	-	-	-	-
5	JALSENA I	0.75	1.0	25	25	220	3370	3095	2810	2555	2285	2015	1910	1765	1620	1500	1365	1095	760	-	-	-
6	JALNAYAK I	0.75	1.0	25	25	230	4050	3745	3455	3165	2880	2590	2445	2300	2160	2015	1870	1580	1225	1040	-	-
7	JALHASTI I	0.75	1.0	25	25	230	4280	3975	3705	3385	3095	2805	2665	2520	2375	2195	2015	1725	1345	1150	1000	-
8	JALTARA I	0.75	1.0	25	25	230	4300	4030	3744	3450	3165	2880	2735	2590	2445	2300	2160	1870	1510	1295	1150	800

- Note:

 JALNAYAK I and JALNAYAK II are also available in three phase.

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

AQUA KNIGHT

V-FLOW

AQUA TORRENT-10FCL

CMS N

TECHNICAL SPECIFICATION

		AQUA KNIGHT
Head	:	Up to 33 Meters
Capacity	:	Up to 1950 LPH
Power Rating	:	0.37 to 0.75 kW (0.5 to
\/=lk========		180 to 240 Volte (Sing

to 1.0 HP) Voltage range : 180 to 240 Volts (Single Phase)

V FLOW Up to 50 Meters Up to 2560 LPH

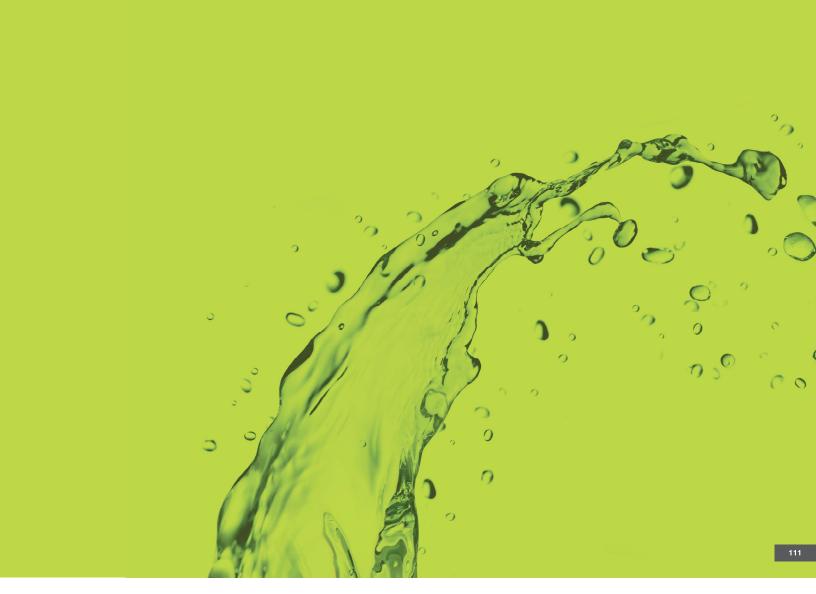
0.37 to 0.75 kW (0.5 to 1.0 HP) 180 to 240 Volts (Single Phase)

AQUA TORRENT-10FCL Up to 42 Meters Up to 3500 LPH 0.75 kW / 1.0 HP

180 to 260 Volts (Single Phase)

CMS N Up to 42 Meters Up to 3820 LPH

0.37 to 0.75 kW (0.5 to 1.0 HP) 180 to 240 Volts (Single Phase)



	PEF	RFORI	MAN	CE C											TED V	OLTAC	ŝΕ,			
			Pov	ver	Pipe	Size	Rated					TOTA	L HEAI	O IN ME	TRES					
S. No.	Pump Model	L	Rati	ing	(m	n)	Voltage	6			12		18		24		30		30	3
		No									DI	SCHAR	GE IN L	ITRES	PER HO	UR				
1	AQUA KNIGHT 50		_				220	17		_	300		930		520	_	50		-	
2	AQUA KNIGHT 10	00 (0.75	1	25	25	220	19	50	1	765	1	550	1	260	9	000		50	0
	PEF	RFORM	MAN	CE C											ATED V	/OLTA	GΕ,			
s.							Rated						L HEAI	O IN ME	TRES					
No.	Pump Model							6	10	14	18	22	26	30	34	38	42	40	6	50
							` '					SCHAR				UR		_		
1		FLOW 0.37 0.5 25 25 240 FLOW-1 0.75 1 25 25 240							2439	2250	2043	1773	1457	1134	729	1140	-	-		140
2	V PLOW-1	PERFORMANCE CHART FOR AQUA						2560	2520	2420	2200	2000	1040	1620	1300	1140	000	20	50	140
	PERFORMANCE CHART FOR AQUA TORRENT-10FCL MINI RANGE PUMP, 4 POLE, AT RATED VOLTAGE, 50 Hz FREQUENCY, SINGLE PHASE A.C. POWER SUPPLY Power Rating Power Rat																			
S.			Po	wer	Pipe	Size	Pated					TOTA	L HEAI	O IN ME	TRES					
No	Pump Model						Voltage	6	10		14) ;	34	38	T	42
No.	Pump Model		Ra	ting	(n	nm)		6	10			18	22	26	30		34	38		42
No. Pump Model Mailing Villing Voltage 6 10 14 18 22 26 30 34 38 42															30 PER HO	UR				
	AQUA TORRENT-10	0FCL	kW 0.75	HP 1.0	SUC. 25	DEL 25	Voltage (Volts) 230 DF 'CMS'	3500 SERIES	3170	0 29 DLE, N	DIS 915 2	18 SCHARG 700 BLOC F	22 GE IN L 2340 PUMP!	26 ITRES 2015 S, AT F	30 PER HO	OUR 95 1:	330			
1	AQUA TORRENT-10	OFCL FORM	kW 0.75 ANC	HP 1.0	SUC. 25 IART F 50 H	DEL 25 FOR Coz FRE	Voltage (Volts) 230 OF 'CMS' QUENC	3500 SERIES	3170 6, 4 PC LE PH	O 29 DLE, N	DIS 915 2 MONOR A.C. PO	SCHARG 700 BLOC FOWER	22 GE IN L 2340 PUMPS SUPPI	26 ITRES 2015 S, AT F LY HEAD	PER HO 169 RATED	VOLTA	AGE,	970		650
	AQUA TORRENT-10	OFCL FORM	kW 0.75 ANC	HP 1.0	SUC. 25 IART F 50 H	DEL 25 FOR Coz FRE	Voltage (Volts) 230 PF 'CMS' QUENC	3500 SERIES Y, SINGL	3170	0 29 DLE, N	DIS 915 2	SCHARGE 700 BLOC FOWER	22 GE IN L 2340 PUMP! SUPPI	26 2015 3, AT F LY	PER HO 169 RATED	OUR 95 1: VOLTA	AGE,	970	25	
S. No.	AQUA TORRENT-10 PERF	FORM,	ANC	HP 1.0	SUC.	DEL 25 FOR Corrections of the correction of the	Voltage (Volts) 230 PF 'CMS' QUENC	3500 SERIES Y, SINGL Rated oltage Volts)	3170 G, 4 PC LE PH	DLE, MIASE	DIS 2915 2 4 10 10 10 10 10 10 10 10 10 10 10 10 10	18 SCHARG	22 GE IN L 2340 PUMPS SUPPI TOTAL 13	26 ITRES 2015 S, AT F LY HEAD 15	PER HO 169 RATED	VOLTARES	330 AGE,	970		650
1 S.	AQUA TORRENT-10	FORM,	ANC	HP 1.0	SUC.	DEL 25 FOR Corrections of the correction of the	Voltage (Volts) 230 PF 'CMS' QUENC	3500 SERIES Y, SINGL	3170 6, 4 PC LE PH	DLE, MIASE	DIS 915 2 MONOR A.C. PO	18 SCHARG	22 GE IN L 2340 PUMPS SUPP TOTAL 13	26 ITRES 2015 S, AT F LY HEAD 15	PER HO 169 RATED	VOLTA RES 19 2 ER HOL	330 AGE,	970	25	650
S. No.	AQUA TORRENT-10 PERF Pump Model CMS 525N	OFCL FORM	RakW 0.75 ANC Power Rating	HP 1.0	SUC. 25 HART F 50 H Pipe (n	DEL 25 FOR C 25	Voltage (Volts) 230 PF CMS EQUENC	3500 SERIES Y, SINGL Rated oltage Volts) 220	3170 5, 4 PC LE PH 5 330 4 POI	0 29 DLE, M IASE A 6	9 0 2920 0 2920	18 SCHARGE TOO SCH	22 GE IN L 2340 PUMPS SUPPI TOTAL 13 HARGE 2520 UMPS	26 ITRES 2015 S, AT FLY HEAD 15 EIN LIT 2300 2	30 169 169 RATED 17 17 17 17 18 18 18 18	VOLT/ RES 19 2 ER HOU	330 AGE, 1 2 1R 20 11	970		650
1 S. No.	AQUA TORRENT-10 PERF Pump Model CMS 525N	OFCL FORM R kW 0.37	ANC Power ating	HP 1.0 THE CH	IART F 50 H Pipe (r SUC. 25	DEL 25 FOR Coz FREemm) DEI 25 FOR Coz FREEmm) DEI 25 FOR Coz FREEmm)	Voltage (Volts) 230 PF 'CMS' EQUENC I V V (3500 SERIES Y, SINGL Rated oltage Volts) 220 140N', Y, SINGL	3170 5, 4 PC LE PH 5 330 4 POI LE PH	0 29 DLE, M IASE A 6	9 0 2920 0 2920	18 SCHARGE TOO SCH	22 GE IN L 2340 PUMPS SUPP TOTAL 13 HARGE 2520 UMPS SUPP	26 ITRES 2015 S, AT F LY HEAD 15 E IN LIT 2300 2 , AT R	30 169 169 RATED 17 17 17 17 18 18 18 18	PUR 15 15 15 15 15 15 15 1	330 AGE, 1 2 1R 20 11	970		650
1 S. No. 1	AQUA TORRENT-10 PERF Pump Model CMS 525N	PR KW 0.37	ANC Power ating	HP 1.0 E CH T 9 HP D.5	IART F 50 H Pipe (r SUC. 25	DEL 25 FOR Coz FREemm) DEI 25 FOR Coz FREEmm) DEI 25 FOR Coz FREEmm)	Voltage (Volts) 230 PF 'CMS' EQUENC I V V (3500 SERIES Y, SINGL Rated oltage Volts) 220	3170 6, 4 PC LE PH 5 330 4 POI LE PH	0 29 DLE, M IASE A 6	9 0 2920 0 2920	18 SCHARG	22 GE IN L 2340 PUMPS SUPP TOTAL 13 HARGE 2520 UMPS SUPP TOTAL	26 ITRES 2015 S, AT F LY HEAD 15 E IN LIT 2300 2 , AT R LY L HEAL	30 169 169 RATED IN MET 17	PUR 10 15 15 15 15 15 15 15	330 AGE,	970 23 2 20 8		650
1 S. No.	PUMP Model CMS 525N PERI	PR KW 0.37	RakW 0.75 ANC ANC Power atting	HP 1.0 THE CH	IART F 50 H Pipe (r SUC. 25	DEL 25 FOR CZ FREE 25	Voltage (Volts) 230 PF 'CMS' EQUENC I V V (3500 SERIES Y, SINGI Rated pltage Volts) 220 140N', Y, SINGI Rated	3170 5, 4 PC LE PH 5 3300 4 POI LE PH	DLE, MASE A	9 0 2920 ONOB	18 SCHARGE TOWER DWER DWER DWER DWER DWER DWER DWER D	22 GE IN L 2340 PUMPS SUPPI TOTAL 13 HARGE 2520 UMPS SUPP TOTAL	26 2015 2015 S, AT F LY HEAD 15 E IN LIT 2300 2 AT R LY L HEAI 19 2	PER HOLE 169 RATED IN MET 17 1 RES PE 2050 18 ATED	POUR 10 10 10 10 10 10 10 1	AGE, 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	970 23 2 20 8	150	650 26 700

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

JET PUMPS

JET PUMPS

FEATURES

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which provides ease of maintenance thereby extending the life of the pump.

Shielded Ball Bearing

The pumps are fitted with shielded ball bearing so no external lubrication required through life cycle and low noise level.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Design to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a heat lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

TECHNICAL SPECIFICATION

Depth to Low Water Level Capacity Power Rating

 Up to 3600 LPH
 0.37 to 1.1 kW (0.5 to 1.5 HP)

Voltage Range
Insulation

- 180 to 240 Volts (Single Phase)

Up to 48 Metres

Insulation Protection Well Size -

- B Class - IP 44

50 mm to 115 mm

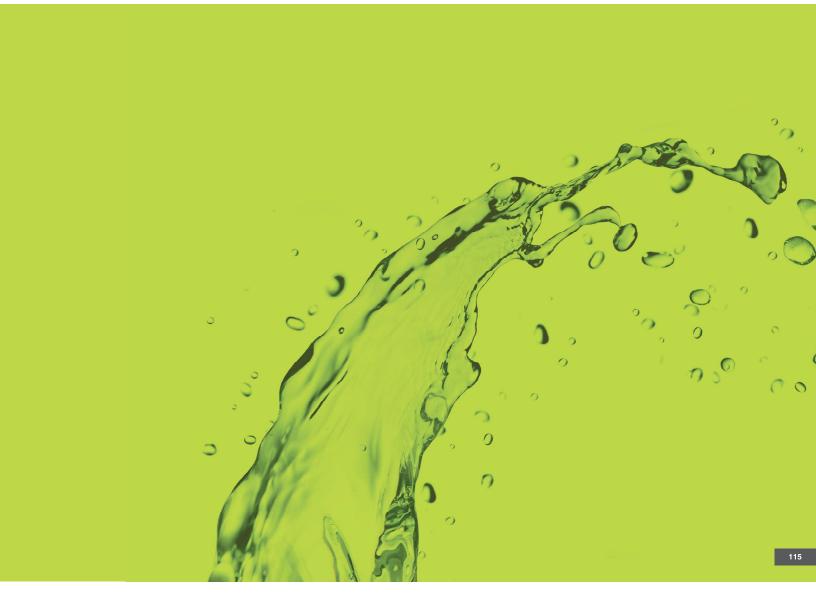
MATERIAL OF CONSTRUCTION

Impeller Delivery Casing Motor Body Pump Shaft Jet Unit

Cast IronCast IronCast IronCarbon Steel

- Bronze

- Domestic water supply
- Water supply to over head tanks in bungalows
- Construction site
- · Gardens/ Fountains
- Lawn sprinklers



	Pump Mode Twin Type War War																							
	Down Madel		Min.				Pine	size (m	ım)	Rated				D	EPTH :	TO LOV	V WATI	ER LEV	EL IN I	METRE	S			
Sr. No.	•			Operating Pressure	-		<u> </u>				9	12	15	18	21	24	27	30	33	36	39	42	45	48
140.	IWIN Type	Oilit		(Meters)	kW	HP	DEL.	PRESS.	DIS.	(Volts)					DIS	CHARG	E IN L	TRES	PER H	OUR				
1	KJ = 05V/H	4T6	100	8	0.37	0.5	32	25	25	210	1920	1680	1320	1020	720	540	360	-	-	-	-	-	-	-
2	KJ - 10V/H	4T3	100	19	0.75	1.0	32	25	25	210	2700	2520	2220	1800	1500	1250	960	660	-	-	-	-	-	-
3	KJ - 10V	4T6	100	19	0.75	1.0	32	25	25	210	1800	1790	1525	1300	1090	900	725	570	432	300	180	120	-	-
4	KJ - 10V/H	5T2	115	19	0.75	1.0	40	32	25	210	3360	3090	2700	2340	1990	1600	1240	1000	-	-	-	-	-	-
5	KJ = 15V/H	4T6	100	23	1.10	1.5	32	32	25	210	1940	1920	1880	1860	1740	1560	1350	1170	1050	920	810	690	570	480
6	KJ = 15V/H	4T6	110	23	1.10	1.5	32	25	25	210	1896	1884	1860	1764	1584	1356	1152	960	780	648	516	384	264	-
7	KJ = 15V/H	5T2	115	22	1.10	1.5	40	32	25	210	3600	3360	3000	2670	2350	2010	1680	1320	1080	720	-	-	-	-
	PACKER TYPE																							
8	KJ = 10V/H	2P1	50	20	0.75	1.0	32	25	25	210	-	1600	1200	1062	900	540	-	-	-	-	-	-	-	-

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SHALLOW WELL PUMPS

FEATURES

High Head Applications

The pump has been designed to deliver large volumes of water for high head applications, helping customers to achieve high turnaround time and productivity.

High Quality Aluminum Motor Body

Special grade aluminum motor body provides high resistance to corrosion, better heat dissipation and lowers its overall weight for great portability.

High Suction Lift

The pump has suction lift capacity upto 8.5 meters with high head, allowing pumping water at high volumes for a variety of applications

Wide Voltage Design

The motor is designed to withstand wide voltage variation from 180 to 240 volts and reduces motor burning in low/high voltage.

TOP - Thermal Overload Protector

The pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects of fault current

Handle to Enhance Grip and Portability

A handle attached to the pump allows user to carry the pump anywhere, adding to its portability and convenience of use.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

Shielded Ball Bearing
The pumps are fitted with shielded ball bearing so no external lubrication required through life cycle and low noise level.

TECHNICAL SPECIFICATION

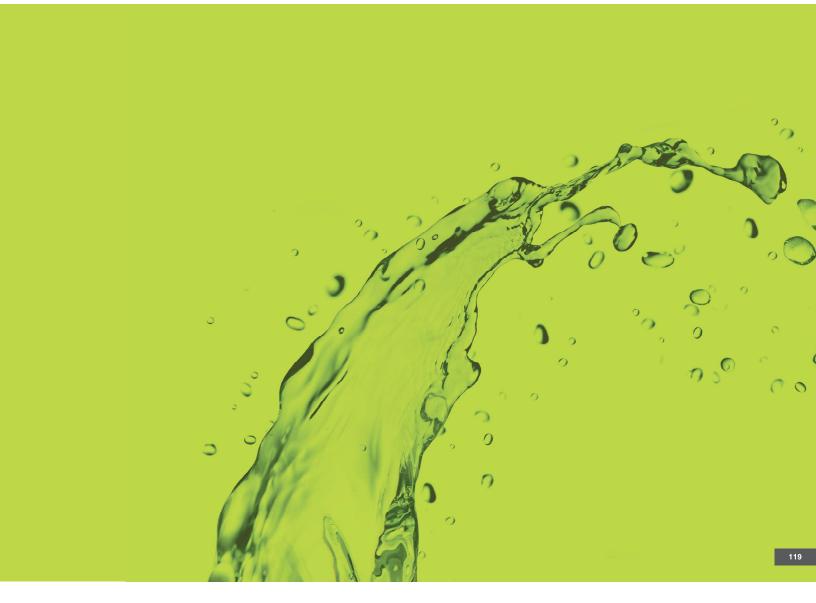
Head Range Discharge Range

Up to 40 Metres - Up to 5112 LPH

Power Rating Voltage Range

- 0.37 to 1.1 kW (0.5 to 1.5 HP)
- 180 to 240 Volts (Single Phase)
 - 180 to 260 Volts (for KsWJ 10M)

- Domestic water supply
- Water supply to over head tanks
- Gardens/ Fountains
- Car washing
- Lawn sprinklers



		SW - 05 0.37 0.5 25 25 4.2 230 3300 3200 3120 3000 2820 2750 2400 2200 2040 1950 1850 1680 1500 1 IFTER - 100 0.75 1 25 25 5.5 220 2700 2500 2390 260 260 260 1800 1440 1000 810 630 -																							
	Pump Model Rating (mm) Current Voltage 5 8 10 12 15 16 20 22 24 25 26 28 30 32 34 35 36 40																								
S.		Rat	ing	(m	m)	Current	Voltage	5	8	10	12	15	16	20	22	24	25	26	28	30	32	34	35	36	40
		kW	HP	SUC.	DEL	(Amps)	(Volts)							DISC	HARG	E IN LI	TRES	PER H	IOUR						
1	LIFTER - 60	0.37	0.5	25	25	3.4	220	-	2600	2520	2460	2340	2290	2070	1900	1750	1690	1590	1110	600	-	-	-	-	-
2	KSW - 05	0.37	0.5	25	25	4.2	230	3300	3200	3120	3000	2820	2750	2400	2200	2040	1950	1850	1680	1500	-	-	-	-	-
3	LIFTER - 100	0.75	1	25	25	5.5	220	-	-	-	-		-	-	2700	2500	2390	2260	2050	1800	1440	1000	810	630	-
4	KSW - 10	0.75	1	25	25	5.5	240	-	-	-	-	3600	3550	3300	3000	2550	2400	2250	2050	1800	1450	1050	900	750	300
5	LIFTER - 150	1.1	1.5	25	25	5.5	220	-	-	-	-	-	-	-	-	-	-	2500	2340	2070	1710	1440	1250	1080	-

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

OPENWELL SUBMERSIBLE PUMP Single Phase

SINGLE PHASE OPEN-WELL SUBMERSIBLE PUMPS

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variation from 160 to 260 volts and reduces motor burning in case of low/high voltage.

Lightweight and Compact DesignConstructed with special grade engineering materials, compact designs for ease of handling and installation.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Advanced Water Cooled Motors Designs

The motor is filled with potable water which protects it from overheating and facilitates smoother and trouble free operation for years.

TECHNICAL SPECIFICATION

Up to 42 Metres Head Range Discharge Range Up to 9.7 LPS Power Rating 0.37 to 1.5 kW (0.5 to 2 HP)

160 to 260 Volts Voltage Range (Single Phase)

Insulation PP IP68 Protection

MATERIAL OF CONSTRUCTION

Impeller Cast Iron / Noryl **Delivery Casing** Cast Iron Motor Body Stainless Steel Shaft Stainless Steel

- Domestic and community water supply
- Gardening and small farm irrigation
- Water fountains
- Construction site
- Water supply to over head tanks

	kW HP SUC. DEL (Volts) KOSI - 0520 0.37 0.5 25 25 210 - - 1.80 1.50 1.05 0.45 - - - - 1.80 1.50 1.05 0.45 -																							
		D	Detien	Div. O	()	Rated								TOTA	L HEA	D IN MI	ETERS							
S. No.	PUMP MODEL	Power	Hating	Pipe Si	ze (mm)			10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42
		kW	HP	SUC.	DEL.	(Volts)		Residual Control of																
1	KOSi - 0520	0.37	0.5	25	25	210	-	-	1.80	1.50	1.05	0.45	-	-	-	-	-	-	-	-	-	-	-	-
2	KOSi - 123	0.75	1	50	40	210	4.80	4.45	4.10	3.75	3.35	2.90	2.15			-			-	-	-	-	-	-
3	KOSi - 135	0.75	1	25	25	210	-	-	-	-	2.45	2.25	2.10	1.90	1.70	1.45	1.20	0.80	0.30	-	-	-	-	-
4	KOSi - 1.522	1.1	1.5	50	40	210	-	6.10	5.60	5.10	4.50	3.70	2.80			-		-	-	-	-	-	-	-
5	KOSi 1.540	1.1	1.5	32	25	210	-	-	-		-	-	-	3.05	2.80	2.60	2.30	1.95	1.60	1.20	0.70	-	-	-
6	KOSi - 216	1.5	2	65	50	210	-	9.70	8.40	7.10	5.20	-	-	-	-		-		-	-	-	-	-	-
7	KOSi - 225	1.5	2	50	40	210	-	-	6.30	5.80	5.30	4.70	4.10	3.40	2.60	1.30	-	-	-	-	-	-	-	-
8	KOSi - 245	1.5	2	32	25	210	-	_	-	-	-	-	-	-	-	-	3.25	3.00	2.70	2.35	1.95	1.55	1.10	0.35

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water,

KOSi C

SINGLE PHASE OPEN-WELL SUBMERSIBLE PUMPS

WITH CAST IRON MOTOR BODY

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variation from 160 to 260 volts and reduces motor burning in case of low/high voltage.

Lightweight and Compact DesignConstructed with special grade engineering materials, compact designs for ease of handling and installation.

Dynamically Balanced Rotating Parts

Minimum vibrations protect components from damages during the operations, thus ensuring consistent performance as concentricity is maintained.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which facilitates ease of maintenance thereby extending the life of the pump.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating. It provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Advanced Water Cooled Motors Designs

The motor is filled with potable water which protects it from overheating and facilitates smoother and trouble free operation for years.

TECHNICAL SPECIFICATION

Up to 36 Metres Discharge Range Up to 9.7 LPS

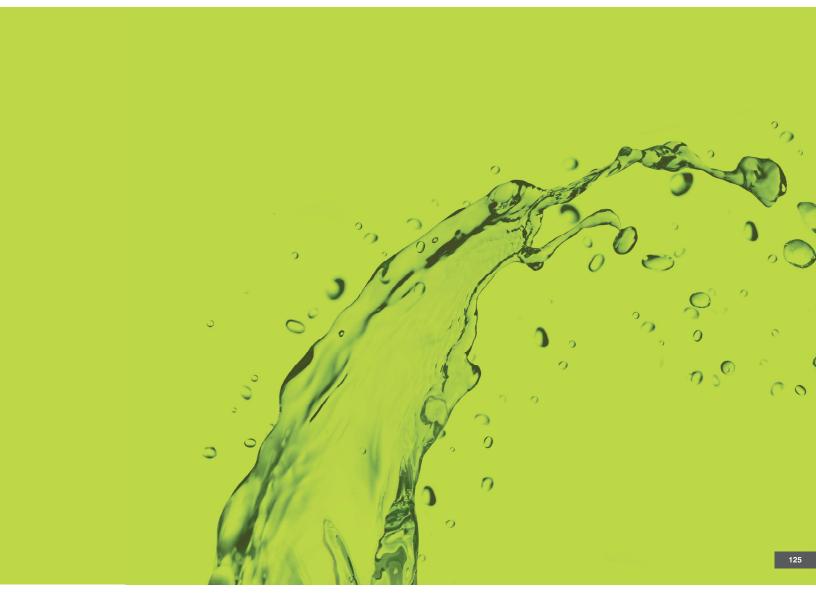
Power Rating 0.37 to 1.5 kW (0.5 to 2 HP) Voltage Range 160 to 260 Volts (Single Phase)

PP Insulation Protection IP68

MATERIAL OF CONSTRUCTION

Impeller Cast Iron / Noryl Delivery Casing Cast Iron Motor Body Cast Iron Shaft Stainless Steel

- Domestic and community water supply
- Gardening and small farm irrigation
- Water fountains
- Construction site
- · Water supply to over head tanks



	PERF	ORMA	NCE C	HART I		OSi Cast Ir z FREQUE									IBMEF	RSIBLE	E PUM	PS,			
	No. PUMP MODEL Power Rating Pipe Size (mm) Rated Voltage (mm) Rating Rated Voltage (with the control of the control																				
S. No.	PUMP MODEL	Rat	ting	(n	ım)		8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
		kW	HP	SUC.	DEL.	(Volts)					DIS	CHAR	GE IN	LITRE	S PER	SECC	NDS				
1	KOSi - 0520	0.37	0.5	25	25	210	•	-	1.80	1.50	1.05	0.45	-	-	•		•	-	•		-
2	KOSi - 123	0.75	1	50	40	210	4.80	4.45	4.10	3.75	3.35	2.90	2.15	-	-	-	-	-	-	-	-
3	KOSi - 135	0.75	1	25	25	210	-	-	-	-	2.45	2.25	2.10	1.90	1.70	1.45	1.20	0.80	0.30	-	-
4	KOSiC - 1.522	1.1	1.5	50	40	210	٠	5.90	5.30	4.80	4.10	3.30	1.20	-	-	-	-	-	-	-	-
5	KOSiC - 1.540	1.1	1.5	32	25	210	•	-	-	-	-	-	-	3.05	2.80	2.60	2.30	1.95	1.60	1.20	0.70
6	KOSiC - 216	1,5	2	65	50	210	•	9.70	8.40	7.10	5,20	-	-	-		-		-			-
7	KOSi - 225	1.5	2	50	40	210	-	-	6.30	5.80	5.30	4.70	4.10	3.40	2.60	1.30	-	-			-

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

PRESSURE BOOSTING SYSTEM

PRESSURE BOOSTING SYSTEM

FEATURES

Compact, Reliable and Silent

Dynamically balanced rotating parts, superior quality bearings and SS fabricated impellers with compact design ensures reliable and silent operations.

TOP - Thermal Overload Protector

The pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects of fault current

Diaphragm Type Pressure Tank

Diaphragm type pressure tank made from high grade engineering material.

Reliable and Durable Components

Reliable and durable peripheral parts such as Pressure Switch, Standardized Size of 5 Way Connector, and Italian make NRV and SS hose pipe.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

TECHNICAL SPECIFICATION

Head Range - Up to 52 Metres
Discharge Range - Up to 140 LPM

Power Rating - 0.4 to 1.1 kW (0.6 to 1.5 HP)

Pressure Range - Up to 4.4 kg/cm²
Voltage Range - 180 to 240 Volts (Single Phase)

 Voltage Range
 180 to 24

 Insulation
 B Class

 Protection
 IP 44

 Tank Size
 24 Litres

MATERIAL OF CONSTRUCTION

 Impeller
 Stainless Steel

 Diffuser
 Stainless Steel

 Motor Body
 Aluminum Die Cast

 Pump Shaft
 Stainless Steel

 Pump Stage Casing
 Stainless Steel

 Suction & Delivery Casing
 Cast Iron

- Consistent Pressure at Multi Outlets
- Multi Jet Shower Panels
- Washing Machine, Hot Water Geyser, Gas Geyser
- · Pressurised Washing of Vehicles
- Kitchenware Washing

	PER	FORI	MANO	CE CH				ES, PRESSU SINGLE PHA				AT RAT	ED VO	LTAGE	,		
S.	Pump Model		wer		Size	Rated	Rated	Pressure	No. of	No.				ARGE I			
No.	Horizontal/	на	ling		m)	Current	Voltage	Range	Outlets/	of	20	40	60	80	100	120	140
NO.	Vertical Models	kW	HP	SUC.	DEL.	(Amps)	(Volts)	(kg/cm2)	Taps	Stages		1	OTAL H	EAD IN	METER	S	
-1	CPBS - 52424H / V	0.4	0.6	25	25	5.5	220	1.4 - 2.4	5	2	25	21	17	6	-	-	-
2	CPBS - 62824H / V	0.6	0.8	25	25	6.5	220	1.8 - 2.8	6	3	35	30	26	16	6	-	-
3	CPBS - 73624H / V	0.75	1.0	25	25	7.5	220	2.2 - 3.6	7	4	41	37	33	29	24	18	6

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

PRESSURE BOOSTING SYSTEM

FEATURES

Fully Automatic System

No need to ON and OFF, it automatically gets ON when the pressure drops to pre-set pressure and cuts OFF when it reaches to maximum pre-set pressure.

Y strainer help in removing undesired solids from inlet water.

Compact and Robust Design

Occupies less space due to compact design. Dynamically balanced rotating parts, superior quality bearings ensure reliable operations.

Durable Component

Reliable and durable peripheral parts such as Pressure Switch and Tank provides better life to system.

TOP - Thermal Overload ProtectorThe pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects of fault

TECHNICAL SPECIFICATION

Head Range Up to 28 Meters Discharge Range Up to 2050 LPH Power Rating 0.37 kW (0.5 HP)

Up to 2.4 kg/cm²
180 to 260 Volts (Single phase) Pressure Range Voltage range

B Class Insulation Protection IP 44 Tank Size 2 Litres

- Bathroom Showers
- Consistent pressure at multi outlets
- Washing machine, Gas Geyser
- Pressurised washing of vehicles
- Kitchenware washing

		PERFO	RMANC			R, PRESSUF IGLE PHASI				ATED VO	DLTAGE	,			
Sr.	Pump	Pov	wer		pe (MM)	Rated	Rated	Pressure	6	10	OTAL HE	AD IN MI	ETERS 22	26	28
No.	Model	kW	HP	Suc	Del	(IN AMPS)	Voltage (VOLTS)	Range (kg/cm²)					PER HOU		20
1	Kirloskar K-Booster	0.37	0,5	25	25	3	220	1.4 - 2.4	2050	1655	1400	1150	865	500	360

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

PRESSURE BOOSTING SYSTEM

FEATURES

High Suction Lift

The pump has suction lift capacity of up to 7.5 metres with high head, facilitating pumping of water at high volumes for a variety of applications.

High Quality Aluminium Motor Body

Special grade aluminium motor body ensures high resistance to corrosion, better heat dissipation and lowers the pump's overall weight for great portability.

TOP - Thermal Overload Protector

The pump set features a Thermal Overload Protector that protects the motor from overloading, shielding of the motor and associated circuit from the effects of fault current.

Handle to Enhance Grip and Portability

A handle attached to the pump allows user to carry the pump anywhere, adding to its portability and convenience of use.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components ensures that the pump can be serviced even at remote locations by semi-skilled technicians.

Shielded Ball Bearing

The low noise pumps are fitted with shielded ball bearing; so, no external lubrication is required throughout the life cycle.

High Efficiency and Energy Saving Design Innovative design manufactured at state of the art, plant ensures optimum efficiency and lower energy consumption resulting in significant cost savings.

Dynamically Balanced Rotating Parts

Bynamically paralled vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

TECHNICAL SPECIFICATION

Head Range Up to 28 Meters Up to 2700 LPH Discharge Range 0.37 kW (0.5 HP) Power Rating Up to 2.4 kg/cm² Pressure Range

180 to 260 Volts (Single phase) Voltage range

B Class Insulation Protection IP 44

- Bathroom Showers
- Consistent pressure at multi outlets
- Washing machine, Gas Geyser
- Pressurised washing of vehicles
- Kitchenware washing

		PERF	ORM			TAR GALA FREQUEN									ATED	VOLT	AGE,	,			
		Power Pipe Size Full Load Rated TOTAL HEAD IN METERS																			
S. No.	Pump Model	Rat	ing	(m	m)	Current	Voltage	6	9	10	12	14	15	18	20	21	22	24	25	26	28
		kW	HP	SUC.	DEL	(Amps)	(Volts)						D	SCHA	RGE IN	IЦTR	ES PE	R HOL	JR		
1	STAR GALAXY	0.37	0.5	25	25	2.6	220	2700	2376	2250	2016	1890	1728	1460	1224	1152	1080	790	720	576	450

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

HI - LIFTER

FEATURES

Longevity and Safety

Corrosion, erosion and rust-free, maintains water hygiene for safe drinking water.

High Pressure Water Supply

Suitable for lifting water to greater heights with high pressure. Ready for conversion into a new generation pressure boosting system.

Compact Reliable and Silent

Dynamically balanced rotating parts, superior quality bearings and SS fabricated impellers with compact design ensures reliable and silent operations.

TOP - Thermal Overload Protector

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Lightweight and Compact Design

It allows users to carry the pump anywhere with ease, adding to its portability and convenience to use.

Advanced Electrical Design

Lesser current for same output.

Enhanced Safety Features

All electrical parts of pump are covered, which makes it safer to use.

TECHNICAL SPECIFICATION

Head Range - Up to 50 Meters

Capacity - Up to 75 LPM

Power Rating - 0.37 to 0.93 kW (0.5 to 1.25 HP)

Voltage Range - 220 Volts±10% Insulation - F Class

- IP44 Protection

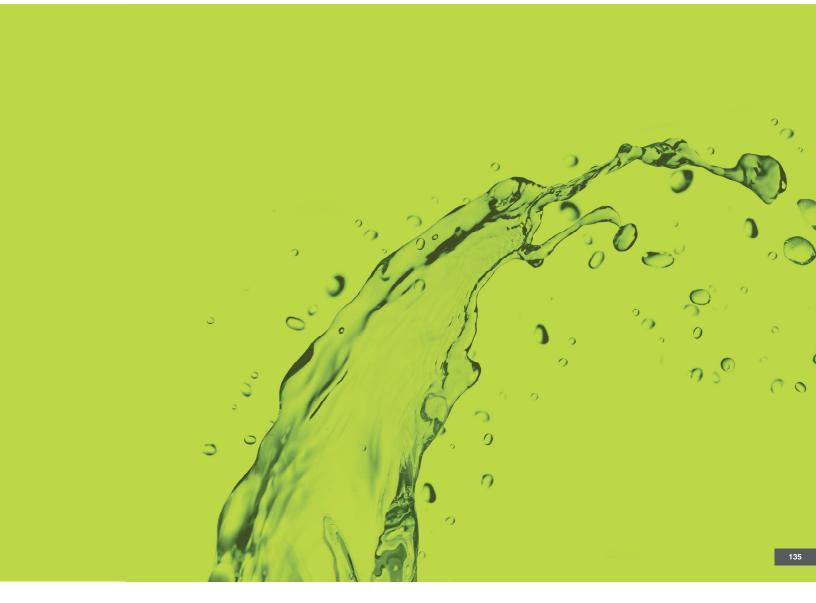
MATERIAL OF CONSTRUCTION

Pump Casing - Stainless Steel

Impeller - Stainless Steel - HL / Noryl - HL MS

- Carbon Steel Mechanical Seal - Carbon Vs Ceramic

- Lifting water to apartments and bungalows
- Pumping water from shallow wells and tanks
- Suitable for pressure boosting system


		PERF	ORMANC	E CHAR					AGE)' PI SUPPL		0 HZ FR	REQUEN	CY,				
		Model	Rating	Pipe	Size					TOTA	L HEAD	O IN ME	TERS				
Sr. No.	Pump Model	Wodel	naung	(m	ım)	40	36	34	30	26	22	20	16	12	8	5	3
		kW	HP	SUC.	DEL.				DIS	CHARG	E IN LI	TRES P	ER MINU	JTE			
1	ETERNA HL - 23	0.37	0.5	25	25	-	-	-	-	-	-	8	13	20	30	40	50
2	ETERNA HL - 35	0.3	0.4	25	25	-	-	-	7	12	19	24	32	37	42	-	-
3	ETERNA HL - 37	0.55	0.75	25	25	-	5	10	20	30	43	46	49	52	54	-	-
4	ETERNA HL - 42	0.6	0.8	25	25	6	16	21	32	40	45	48	50	51	52	-	-
	PERFO	DRMANCE	CHART I	FOR 'HI					PS, AT R SUPPLY		OLTAGE	, 50 HZ	FREQUE	ENCY,			

	PERFC	RMANCE	CHART I	FOR 'HI							OLTAGE	, 50 HZ	FREQUE	ENCY,			
	Performance Chart for 'HI - Lifter (MULTI STAGE)' PUMPS, AT RATED VOLTAGE, 50 HZ FREQUENCY, SINGLE PHASE A.C. POWER SUPPLY																
Sr. No.	Pump Model	wodei	nating	(m	ım)	50	46	42	38	34	32	30	26	22	18	14	10
		kW	HP	(mm) 50 46 42 38 34 32 30 26 22 18 14 10 HP SUC. DEL. DISCHARGE IN LITRES PER MINUTE													
1	ETERNA HL - 32MS	0.75	1	25	25	-	1	1	-	1	ı	16	36	48	57	63	70
2	ETERNA HL - 42MS	0.75	1	25	25	-	1	23	34	42	48	50	58	64	69	73	75
3	Sr. No. Pump Model Model Rating (mm) 50 46 42 38 34 32 30 26 22 18 14 10 kW HP SUC. DEL DISCHARGE IN LITRES PER MINUTE 1 ETERNA HL - 32MS 0.75 1 25 25 - - - - - 16 36 48 57 63 70 2 ETERNA HL - 42MS 0.75 1 25 25 - - 23 34 42 48 50 58 64 69 73 75																

- Note:

 Performance under standard test conditions and may vary on site conditions.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SUBMERSIBLE PRODUCT RANGE

BOREWELL SUBMERSIBLE 8 CM,10 CM & 15 CM OIL COOLED PUMPSETS

8 CM BOREWELL SUBMERSIBLE PUMPS

Oil

FEATURES

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Wide Voltage Design

The motor is designed to withstand wide voltage variations which reduces the chances of motor burning at low voltage.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Lightweight and Compact Design

Constructed with special grade engineering materials, compact designs for ease of handling and installation.

Splined Shaft

Splined shaft made from cold extrusion technology with high surface strength provides better life and good axiality.

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Suitable for Horizontal Applications

Motor with ball bearings are suitable for horizontal installation for water transfer at high heads in residential complexes.

TECHNICAL SPECIFICATION

Head Range - Up to 87 Metres
Discharge Range - Up to 96 LPM

Power Rating - 0.37 to 1.1 kW (0.5 to 1.5 HP)
Voltage Range - 160 to 240 Volts (Single Phase)

Insulation - F Class
Type of Cooling - Oil Cooled
Protection - IP68

MATERIAL OF CONSTRUCTION

Stainless Steel Pump Housing Pump Shaft Stainless Steel Motor Housing Stainless Steel Motor Shaft Stainless Steel Pump Bushes LTB Impeller Norv Diffuser Noryl NRV Cast Iron Suction Cast Iron

APPLICATIONS

Bearing type

Domestic and community water supply

Ball bearing

- Rural water supply
- Gardening and small farm irrigation
- Construction Site
- · Water supplies for high rise building

	P					M BOREWELI OLTS - SINGL							S		
S No	S. No. Pump Model Power Rating No of Size Current LPM 0 20 30 50 60 70 90 96														96
0.110.		kW	HP	Stages	(mm)	(Amp.)	m³/h	0	1.2	1.8	3.0	3.6	4.2	5.4	5.8
1	KP3S - 0610	0.37	0.50	10	32	4.4		28	27	24	19	17	15	7	4
2	KP3S - 0612	0.75	1.00	12	32	7.8	Meters	34	33	29	23	20	18	9	5
3	KP3S - 0615	0.75	1.00	15	32	7.8		43	41	36	29	25	22	11	6
4	KP3S - 0620	0.75	1.00	20	32	7.8	Ë	57	55	48	38	33	29	15	8
5	KP3S - 0626	0.93	1.25	26	32	9.8	Head	74	71	62	50	43	38	19	11
6	KP3S - 0632	1.10	1.50	32	32	11.7	_	91	87	76	62	53	47	23	14

10 CM BOREWELL SUBMERSIBLE PUMPS

FEATURES

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Wide Voltage Design

The motor is designed to withstand wide voltage variations which reduces the chances of motor burning at low voltage.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Lightweight and Compact Design

Constructed with special grade engineering materials, compact designs for ease of handling and installation.

Splined Shaft

Splined shaft made from cold extrusion technology with high surface strength provides better life and good axiality.

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pumpset for variable conditions.

Suitable for Horizontal Applications

Motor with ball bearings are suitable for horizontal installation for water transfer at high heads in residential complexes.

TECHNICAL SPECIFICATION

Head Range - Up to 251 Metres
Discharge Range - Up to 350 LPM

Power Rating - 0.37 to 3.70 kW (0.5 to 5.0 HP)
Voltage Range - 150 to 240 Volts (Single Phase)

rge - 150 to 240 Volts (Single Phase) 280 to 440 Volts (Three Phase) - F Class

Insulation - F Class
Type of Cooling - Oil Cooled
Protection - IP68

MATERIAL OF CONSTRUCTION

Pump Housing Stainless Steel Pump Shaft Stainless Steel Stainless Steel Motor Housing Motor Shaft Stainless Steel Motor Bearing Ball Bearing Pump Bushes NBR Impeller Nory Diffuser Noryl NRV Stainless Steel Stainless Steel Suction

- Domestic and community water supply
- Rural water supply
- Gardening and small farm irrigation
- Construction Site
- Water supplies for high rise building

	PERFOR VOLTAG			RT FOR 1 .TS - SIN												
S No	No Dump Model NO 01 Circ (Ampere)															35
0.110.	, NO.	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0	0.3	0.6	0.9	1.2	1.5	1.8	2.1
1	KU4-0214	0.37	0.50	14	32	4.1	NA		74	69	64	57	50	41	31	20
2	KU4-0221	0.55	0.75	21	32	5.0	NA	Meters	107	104	96	86	75	62	47	30
3	KU4-0224	0.75	1.00	24	32	6.7	2.5		122	118	110	98	86	70	53	34
4	KU4-0228	0.75	1.00	28	32	6.7	2.5	Ë	144	138	128	114	100	82	62	40
5	KU4-0234	1.10	1.50	34	32	9.5	2.9	Head	176	168	155	138	121	100	75	49
6	KU4-0240	1.10	1.50	40	32	9.5	2.9		206	197	183	163	143	117	89	57

	PERFORMANCE CHART FOR 10 CM BOREWELL SUBMERSIBLE PUMPSETS - KU4 - 03 SERIES AT RATED VOLTAGE OF 220 VOLTS - SINGLE PHASE / 415 VOLTS - THREE PHASE, 50 HZ FREQUENCY, AC SUPPLY															
S. No.	Pump Model	Power	Rating	No of	Outlet Size (mm)		Rated Current (Ampere)		0	10	20	25	30	35	40	50
J. 140.	, amp model	kW	HP	Stages		1PH	3PH	m³/h	0	0.6	1.2	1.5	1.8	2.1	2.4	3.0
1	KU4-0307	0.37	0.50	07	32	4.1	NA		45	44	39	36	32	28	22	10
2	KU4-0310	0.55	0.75	10	32	5.0	NA		64	63	56	51	46	39	31	14
3	KU4-0311	0.75	1.00	11	32	6.7	2.5	ည	70	69	61	56	50	43	35	16
4	KU4-0314	0.75	1.00	14	32	6.7	2.5	ete	89	88	78	71	64	55	44	20
5	KU4-0318	1.10	1.50	18	32	9.5	2.9	2	115	113	100	91	82	71	57	26
6	KU4-0321	1.10	1.50	21	32	9.5	2.9	Head in Meters	134	132	117	107	96	83	66	30
7	KU4-0328	1.50	2.00	28	32	12.5	4.0	£	179	176	156	142	128	110	88	40
8	KU4-0334	2.20	3.00	34	32	16.0	6.0		217	214	189	172	155	134	107	49
9	KU4-0340	2.20	3.00	40	32	16.0	6.0		255	251	223	203	183	157	126	57

	PERFORMANCE CHART FOR 10 CM BOREWELL SUBMERSIBLE PUMPSETS - KU4 - 07 SERIES AT RATED VOLTAGE OF 220 VOLTS - SINGLE PHASE / 415 VOLTS - THREE PHASE, 50 HZ FREQUENCY, AC SUPPLY															
S. No.	Pump Model	Power	Rating	No of	Outlet Size (mm)	Rated Current (Ampere)		LPM	0	40	50	60	70	80	90	100
3. 140.	T dilip lilodei	kW	HP	Stages		1PH	зРН	m³/h	0	2.4	3.0	3.6	4.2	4.8	5.4	6.0
1	KU4-0707	0.55	0.75	07	32	5.0	NA		48	42	40	36	31	25	20	9
2	KU4-0708	0.75	1.00	08	32	6.7	2.5	v	54	48	46	41	35	28	23	11
3	KU4-0709	0.75	1.00	09	32	6.7	2.5	eter	61	55	52	46	39	32	26	12
4	KU4-0713	1.10	1.50	13	32	9.5	2.9		87	79	75	67	57	46	37	16
5	KU4-0718	1.50	2.00	18	32	12.5	4.0		123	109	104	92	79	63	51	23
6	KU4-0722	1.87	2.50	22	32	14.25	NA	ř	150	133	127	113	96	77	63	28
7	KU4-0727	2.20	3.00	27	32	16.0	6.0		181	164	155	138	118	95	77	34
8	KU4-0736	3.00	4.00	36	32	NA	NA 8.5		241	218	207	185	158	126	103	45
	PERFOR VOLTAG			RT FOR 1 .TS - SIN		SE / 41	5 VOLT									
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	20	40	60	80	100	120	140
0.110.	- Imp model	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0	1.2	2.4	3.6	4.8	6.0	7.2	8.4
1	KU4-0807	0.75	1.00	07	32	6.7	2.5		41	40	38	36	34	32	27	20
2	KU4-0810	1.10	1.50	10	32	9.5	2.9	Head in Meters	59	57	56	51	49	46	39	29
3	KU4-0814	1.50	2.00	14	32	12.5	4.0	Me	82	80	79	72	68	64	54	40
4	KU4-0821	2.20	3.00	21	32	16.0	6.0	i i	123	120	119	108	102	96	81	60
5	KU4-0828	3.00	4.00	28	32	NA	8.5	Tea	164	160	158	144	136	128	108	80
6	KU4-0838	3.70	5.00	38	32	NA	10.0		223	217	214	195	185	174	147	109

								UBMER OLTS - T								
S. No.	Model	Power	Rating	No of	Outlet Size		Current np.)	LPM	0	25	50	75	150	160	170	175
S. NO.	Wodei	kW	HP	Stages	(mm)	1PH	зрн	m³/h	0	1.5	3.0	4.5	9.0	9.6	10.2	10.5
1	KU4-1505	0.75	1.00	05	50	6.7	2.5		32	31	29	28	17	15	13	12
2	KU4-1507	1.10	1.50	07	50	9.5	2.9		45	43	41	39	24	21	18	16
3	KU4-1509	1.50	2.00	09	50	12.5	4.5	2	57	55	53	50	31	27	23	21
4	KU4-1512	2.20	3.00	12	50	16.0	6.0	Meters	77	73	71	66	42	36	31	28
5	KU4-1514	2.20	3.00	14	50	16.0	6.0	2	89	86	82	77	48	42	36	33
6	KU4-1519	3.00	4.00	19	50	NA	8.5	Head in	121	116	112	105	66	57	49	45
7	KU4-1524	3.70	5.00	24	50	NA	10.0	£	153	147	141	132	83	72	62	56
8	KU4-1526	3.70	5.00	26	50	NA	10.0		166	159	153	143	90	78	67	61

	PERFOR VOLTAG			RT FOR 1 .TS - SIN												
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	100	150	200	250	275	300	350
J. 140.	. ump mous	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0	6	9	12	15	17	18	21
1	KU4-2504	1.10	1.50	04	50	9.5	2.9		22	21	18	15	12	10	8	5
2	KU4-2506	1.50	2.00	06	50	12.5	4.0	Meters	33	31	27	23	17	15	12	8
3	KU4-2507	1.87	2.50	07	50	14.25	5.0		39	36	32	26	20	18	14	9
4	KU4-2509	2.20	3.00	09	50	16.0	6.0	i E	50	46	41	34	26	23	18	11
5	KU4-2512	3.00	4.00	12	50	NA	8.5	Head	66	62	54	45	35	30	24	15
6	KU4-2516	3.70	5.00	16	50	NA	10.0		88	82	72	60	46	40	32	20

10 CM BOREWELL SUBMERSIBLE PUMPS

FEATURES

High Efficiency And Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Wide Voltage Design

The motor is designed to withstand wide voltage variations which reduces the chances of motor burning at low voltage.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Design To Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Lightweight And Compact Design

Constructed with special grade engineering materials and compact designs hence ease in handling and installation.

Flatter Efficiency Curve

Minimal drop in efficiency during entire operating range, resulting in lower operating cost.

Suitable For Horizontal Applications

Motor with higher capacity shielded ball bearing suitable for operating in the horizontal position

TECHNICAL SPECIFICATION

Head Range Discharge Range Up to 169 Metres

Up to 350 LPM Power Rating 0.37 to 2.2 kW (0.5 to 3.0 HP)

Voltage Range Type of Cooling 150 to 240 Volts (Single Phase)

Oil Cooled Insulation F Class IP68 Protection

MATERIAL OF CONSTRUCTION

Pump Housing Stainless Steel Pump Shaft Stainless Steel Motor Housing Stainless Steel Motor Shaft Stainless Steel Motor Bearing Ball Bearing NBR Pump Bushes Impeller Noryl Diffuser Noryl NRV Cast Iron Suction Cast Iron

- · Domestic and community water supply
- Water supply for high rise building
- Gardening and small farm irrigation
- Construction site
- · Ground water supply to water works

	PERFOR						UBMERSIE S - SINGLE							LY	
					KP4 J	ALRAAJ U	VA 30 SERI	ES							
S.	Model		wer ling	No of	Outlet Size	Rated Current	LPM	0	17	21	27	30	36	45	52
No.	Model	kW	HP	Stages	(mm)	1Ø	m³/h	0.0	1.0	1.3	1.6	1.8	2.2	2.7	3.1
1	UVA 30-0507	0.37	0.50	7	32	4.1		51	47	46	44	40	35	25	16
2	UVA 30-0810	0.55	0.75	10	32	5.0	<u>r</u> s	73	68	66	63	58	50	35	23
3	UVA 30-1012	0.75	1.00	12	32	6.7	Head in Meters	87	81	79	75	69	60	42	27
4	UVA 30-1014	0.75	1.00	14	32	6.7	ī N	102	95	92	88	81	70	49	32
5	UVA 30-1016	0.75	1.00	16	32	6.7	ad i	116	108	106	100	92	80	56	36
6	UVA 30 - 1520	1.10	1.50	20	32	9.5	운	145	135	132	125	115	100	70	45
7	UVA 30 - 2025	1.50	2.00	25	32	11.0		181	169	165	156	144	125	88	56
					KP4 J	ALRAAJ U	VA 60 SERI	ES							
S.	Model	Po Rat	wer ling	No of	Outlet Size	Rated Current	LPM	0	15	30	45	60	72	92	100
No.	Model	kW	HP	Stages	(mm)	1Ø	m³/h	0.0	0.9	1.8	2.7	3.6	4.3	5.5	6.0
1	UVA 60 - 1006	0.75	1.00	6	32	6.7		48	46	43	38	31	26	12	8
2	UVA 60 - 1008	0.75	1.00	8	32	6.7	Head in Meters	64	62	58	51	41	34	17	10
3	UVA 60-1010	0.75	1.00	10	32	6.7	Me	79	77	72	63	51	43	21	13
4	UVA 60-1512	1.10	1.50	12	32	9.5	Ë	95	92	86	76	62	51	25	15
5	UVA 60-1514	1.10	1.50	14	32	9.5	lea	111	108	101	88	72	60	29	18
6	UVA 60-2016	1.50	2.00	16	32	11.0		127	123	115	101	82	68	33	20
					KP4 J	ALRAAJ U\	/A 150 SER	IES							
S.	Model	Por Rat	wer ting	No of	Outlet Size	Rated Current	LPM	0	105	120	135	150	165	180	195
No.		kW	HP	Stages	(mm)	1Ø	m³/h	0.0	6.3	7.2	8.1	9.0	9.9	10.8	11.7
1	UVA 150-2008	1.50	2.00	8	50	11.0	Head in Meters	52	43	41	38	33	29	24	17
					KP4 J	ALRAAJ U\	/A 250 SER	IES							
S.	Model		wer ting	No of	Outlet Size	Rated Current	LPM	0	100	150	200	250	275	300	350
No.		kW	HP	Stages	(mm)	1Ø	m³/h	0.0	6.0	9.0	12.0	15.0	16.5	18.0	21.0
	UVA 250-3009	2.20	3.00	9	50		Head in	50	44	39	34	30	26	22	14

FEATURES

Higher Efficiencies and Lower Power Consumption

Innovative motor designs with the advantage of better lubricating and cooling properties of oil deliver unmatched performances with 4 to 5% higher efficiencies at less power consumption, having considerable savings in electricity bills.

Suitable For Horizontal Applications

Ideal for horizontal applications with the advantages of ball bearing construction, these pumps are perfect for horizontal applications.

Suitable For Low Voltage Operations

Impressive in low voltage operations with ball bearing construction lubricated with oil and with no vertical movement of rotor assembly supports the motor to perform well even in low voltage conditions.

Design For Continuous Working

Incredible motor designs with Rotor made from 99.9% EC grade Copper, "S1" duty motors with "F" class insulation make them suitable for continuous working without any adverse effect on the pump life.

Lesser Chances Of Motor Burning

Indigenously designed and developed motor comes with "F" class insulation and is capable of working in a wide voltage band in adverse conditions,

Original Performances For Years

International standard NEMA coupling with lesser transmission losses, lesser wear and tear and efficient hydraulics design performances last longer.

Longer Life And Minimal Maintenace Cost

Inexpensive on cost of maintenance, motors are prefilled with oil having better lubrication and heat transfer properties, which reduces friction and ensures substantial savings from maintenance costs.

No Health Hazard

Inefficacious on health, all the motors are prefilled with non-toxic, non-hazardous purified paraffin oil, which has no fear of health hazard

Unmatched Warranty

Inscription of Indian International product with an unmatched 24-month warranty

TECHNICAL SPECIFICATION

Head Range Discharge Range

Up to 530 LPM

Power Rating 2.2 to 15.0 kW (3.0 to 20.0 HP) 250 to 440 Volts (Three Phase)* Voltage Range

Up to 325 Metres

Type of Cooling Oil Cooled

Insulation F Class Protection - IP68

*Under ideal condition with suitable cable size.

MATERIAL OF CONSTRUCTION

Motor Housing Motor Shaft

Stainless Steel Stainless Steel

Motor Bearing Finish Rotor

Ball Bearing

Copper

Motor Base & Adaptor-

Cast Iron

Pump Shaft Pump Stage Casing -

Stainless Steel

Impeller

Cast Iron Nory

Diffuser

Noryl

Outlet (NRV)

Cast Iron

Suction Housing

Cast Iron

Pump Bushes

NBR / LTB

						REWELL SUBN SE OF 415 VOL									
S. N.	Pump	Power	Rating	INO OI	Outlet Size	Rated Current (Ampere)	LPM	0	120	150	180	210	240	270	300
O. 14.	Model	kW	HP	Stages	(mm)	3Ø	m³/h	0	7.2	9	10.8	12.6	14.4	16.2	18.0
1	KU6i HHN 210 - 0305	2.2	3.0	5	50	6.3		61	57	55	52	49	44	40	35
2	KU6i HHN 210 - 0407	3.0	4.0	7	50	7.9		85	80	77	73	69	62	56	49
3	KU6i HHN 210 - 0508	3.7	5.0	8	50	9.3	S.	97	91	88	83	78	71	64	56
4	KU6i HHN 210 - 0610	4.5	6.0	10	50	11.8	Meters	121	114	110	104	98	89	80	70
5	KU6i HHN 210 - 0812	5.5	7.5	12	50	14.5	<u> </u>	146	137	132	125	118	106	96	84
6	KU6i HHN 210 - 1016	7.5	10.0	16	50	18.0		194	182	176	166	157	142	128	112
7	KU6i HHN 210 - 1319	9.3	12.5	19	50	22.5	Head	230	217	209	198	186	168	152	133
8	KU6i HHN 210 - 1524	11.0	15.0	24	50	26.0		291	274	264	250	235	212	192	168
9	KU6i HHN 210 - 1829	13.0	17.5	29	50	32.5		352	331	319	302	284	257	232	203

						REWELL SUBM EE OF 415 VOL									
S. N.	Pump	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	60	120	180	240	300	360	420
	Model	kW	HP	Stages	(mm)	3Ø	m³/h	0	3.6	7.2	11	14.4	18	21.6	25.2
1	KU6i HHN 240 - 0304	2.2	3.0	4	50	6.3		56	55	52	48	43	38	29	20
2	KU6i HHN 240 - 0405	3.0	4.0	5	50	7.9		70	68	65	60	54	47	36	24
3	KU6i HHN 240 - 0506	3.7	5.0	6	50	9.3	S	84	82	78	72	65	56	44	29
4	KU6i HHN 240 - 0608	4.5	6.0	8	50	11.8	Meters	112	109	103	95	87	75	58	39
5	KU6i HHN 240 - 0810	5.5	7.5	10	50	14.5	<u> </u>	140	137	129	119	108	94	73	49
6	KU6i HHN 240 - 1012	7.5	10.0	12	50	18.0	<u> </u>	169	164	155	143	130	113	88	59
7	KU6i HHN 240 - 1315	9.3	12.5	15	50	22.5	Head	211	205	194	179	163	141	109	73
8	KU6i HHN 240 - 1518	11.0	15.0	18	50	26.0		253	246	233	215	195	169	131	88
9	KU6i HHN 240 - 1821	13.0	17.5	21	50	32.5		295	287	271	250	228	197	153	102
10	KU6i HHN 240 - 2024	15.0	20.0	24	50	36.5		337	328	310	286	260	225	175	117

						REWELL SUBM E OF 415 VOL									
S.N.	Pump	Power	Rating	10 01	Outlet Size	Rated Current (Ampere)	LPM	0	120	180	240	300	360	420	480
	Model	kW	HP	Stages	(mm)	3Ø	m³/h	0.0	7.2	10.8	14.4	18.0	21.6	25.2	28.8
1	KU6i HHN 300 - 0505	3.7	5.0	5	65	9.3		72	67	63	58	52	44	35	23
2	KU6i HHN 300 - 0606	4.5	6.0	6	65	11.8		86	80	76	70	62	53	42	28
3	KU6i HHN 300 - 0808	5.5	7.5	8	65	14.5	2	115	107	101	93	83	70	56	37
4	KU6i HHN 300 - 1010	7.5	10.0	10	65	18.0	Meters	144	134	126	116	104	88	70	46
5	KU6i HHN 300 - 1312	9.3	12.5	12	65	22.5	<u>.</u>	172	161	151	139	125	106	84	55
6	KU6i HHN 300 - 1515	11.0	15.0	15	65	26.0		215	201	189	174	156	132	105	69
7	KU6i HHN 300 - 1818	13.0	17.5	18	65	32.5	Head	258	241	227	209	187	158	126	83
8	KU6i HHN 300 - 2020	15.0	20.0	20	65	36.5		287	268	252	232	208	176	140	92

PERFORMANCE CHART FOR 15 CM BOREWELL SUBMERSIBLE PUMPSETS - KU6i HHN 350 SERIES WITH OIL FILLED MOTORS AT RATED VOLTAGE OF 415 VOLTS - THREE PHASE, 50 HZ FREQUENCY, AC SUPPLY Outlet Size (mm) Rated Current (Ampere) LPM Pump Model No of Stages S.N. kW HP m³/h 0.0 6.0 13.2 16.8 21.0 24.6 28.2 31.8 3Ø 1 KU6i HHN 350 - 0403 3.0 4.0 8.5 2 KU6i HHN 350 - 0504 5.0 10.0 3 KU6i HHN 350 - 0605 6.0 12.0 4.5 4 KU6i HHN 350 - 0806 14.5 5 KU6i HHN 350 - 1008 7.5 19.5 10.0 .⊑ 6 KU6i HHN 350 - 1310 12.5 25.0 7 KU6i HHN 350 - 1512 11.0 15.0 29.0 8 KU6i HHN 350 - 1814 34.0 17.5 13.0 9 KU6i HHN 350 - 2016 15.0 20.0 39.0

SUBMERSIBLE PRODUCT RANGE

BOREWELL SUBMERSIBLE 8 CM & 10 CM WATER COOLED PUMPSET

Water

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variations which reduces the chances of motor burning at low voltage.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Longer and Trouble Free Life

High grade engineering materials like Graded Cast Iron Components, Stainless Steel Shaft, Noryl Impellers, Bronze Bushes, Heavy duty Carbon + SS Thrust Plate, 99.9 % pure Copper Rotor and Winding Wires for longer and trouble free life.

Advanced Water Cooled Motors Designs

The motor is filled with potable water, protects from overheating and facilitates smoother and trouble free operation for the years.

Wide Voltage Motor Designs with Copper Rotor

Motors are designed with extra overload capacities, more water spaces and engineered with 99.9% pure Electro Grade Copper rotor performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians

TECHNICAL SPECIFICATION

Head Range - Up to 131 Metres

Discharge Range - Up to 95 LPM

Power Rating - 0.37 to 1.1 kW (0.5 to 1.5 HP)

Voltage Range - 160 to 240 Volts (Single Phase)

Insulation - B Class

Type of Cooling - Water Cooled

Protection - IP68

MATERIAL OF CONSTRUCTION

 Pump Housing
 Stainless Steel

 Pump Shaft
 Stainless Steel

 Motor Housing
 Stainless Steel

 Motor Shaft
 Stainless Steel

Thrust Bearing - Carbon + Stainless Steel

Cast Iron

 Pump / Motor Bushes
 LTB

 Impeller
 Noryl

 Diffuser
 Noryl

 NRV
 Cast Iron

APPLICATIONS

Suction

- Domestic and community water supply
- · Rural water supply
- Gardening and small farm irrigation
- Construction Site
- Water supplies for high rise building

	PERFC							MERSIBL E PHASE,						ERIES		
S. No	D. Pump Model	Power	Rating	No of	Outlet Size		ated irrent	LPM	0	9	14	18	23	27	32	40
		kW	HP	Stages	(mm)	(A	mp.)	m³/h	0	0.5	0.8	1.1	1.4	1.6	1.9	2.4
- 1	KS3A - 1024	0.75	1.00	24	32	1	7.8	.⊑ છ	90	83	78	73	67	59	50	22
2	KS3A - 1330	0.93	1.25	30	32	9	9.7	Head in Meters	113	104	98	91	84	74	63	28
3	KS3A - 1538	1.10	1.50	38	32	1	1.7	ĭ≥	143	131	124	116	106	93	79	35
	Р													s		
S No	PERFORMANCE CHART FOR 8 CM BOREWELL SUBMERSIBLE PUMPSETS - KS3D SERIES AT RATED VOLTAGE OF 220 VOLTS - SINGLE PHASE, 50 HZ FREQUENCY, AC SUPPLY S. No. Pump Model Power Rating Size Current Size Current Power Rating Size Current															
5. NC	b. Pump woder	kW	HP	Stages	(mm)		mp.)	m³/h	0	1.6	2	2.4	2.8	3.2	3.6	4.3
1	KS3D-0507	0.37	0.50	07	32	4	4.4	ers	29	25	23	21	20	16	11	7
2	KS3D-0811	0.55	0.75	11	32	(6.0	Head in Meters	45	39	36	33	31	25	18	12
3	KS3D-1015	0.75	1.00	15	32	1	7.8	ad in	62	53	49	45	42	34	24	16
4	KS3D-1318	0.93	1.25	18	32	9	9.7	H	74	64	59	54	50	41	29	19
	PERF							BMERSIB E PHASE,						ERIES		
S.No.	Pump Model		Power	Rating	No of	Outlet Size	Rated Current	LPM	0	30	40	50	57	65	75	95
5.140.	T ump model		kW	HP	Stages	(mm)	(Amp.)	m³/h	0.0	1.8	2.4	3.0	3.4	3.9	4.5	5.7
1	KS3 PURNA 60 -	0505	0.37	0.50	5	32	4.4	ırs	22	19	17	15	13	12	10	5
2	KS3 PURNA 60 =	8080	0.55	0.75	8	32	6.0	Head in Meters	34	30	26	23	21	18	15	8
3	KS3 PURNA 60 -	1010	0.75	1.00	10	32	7.8	ï	43	37	33	29	26	23	19	10
4	KS3 PURNA 60 -	1312	0.93	1.25	12	32	9.7	ad	52	44	40	35	31	28	23	12
5	KS3 PURNA 60 -	1515	1,1	1.50	15	32	10.5	He	65	56	50	44	39	35	29	15

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variations which reduces the chances of motor burning at low voltage.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Longer and Trouble Free Life

High grade engineering materials like Graded Cast Iron Components, Stainless Steel Shaft, Noryl Impellers, Bronze Bushes, Heavy duty Carbon + SS Thrust Plate, 99.9 % ${\bf Electro\,Grade\,Copper\,Rotor\,and\,Winding\,Wires\,for\,longer\,and\,trouble\,free\,life,}$

Advanced Water Cooled Motors Designs

The motor is filled with potable water, protects from overheating and facilitates smoother and trouble free operation for the years.

Wide Voltage Motor Designs with Copper Rotor
Motors are designed with extra overload capacities, more water spaces and engineered with 99.9% pure Electro Grade Copper rotor performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED

TECHNICAL SPECIFICATION

Head Range Up to 520 Metres Up to 420 LPM Discharge Range Power Rating 0.37 to 5.5 kW (0.5 to 7.5 HP)

Voltage Range 160 to 240 Volts (Single Phase) 280 to 440 Volts (Three Phase)

B Class Insulation Type of Cooling Water Cooled IP68 Protection

MATERIAL OF CONSTRUCTION

Pump Housing Stainless Steel Pump Shaft Stainless Steel Motor Housing Stainless Steel Motor Shaft Stainless Steel Thrust Bearing Carbon + Stainless Steel

Pump / Motor Bushes NBR / LTB Impeller Noryl Diffuser Nory NRV Cast Iron Suction Cast Iron

- Domestic and community water supply
- Rural water supply
- Gardening and small farm irrigation
- Construction Site
- Water supplies for high rise building

	PERFORI															
	VOLTAG	E OF 2	220 VO	LTS SING	ELE PHAS	SE / 415	5 VOLTS	- THREE	PHAS	E, 50 H	Z FRE	QUENC	Y, AC	SUPPLY		
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	6	18	24	30	36	42	48
3. 140.	r unip woder	kW	HP	Stages	(mm)	1PH	3PH	m³/h	0	0.4	1.1	1.4	1.8	2.2	2.5	2.9
- 1	KS4AN-0507	0.37	0.50	07	32	5.3	NA		49	46	44	42	39	35	30	25
2	KS4AN-0810	0.55	0.75	10	32	6.2	NA	_w	70	65	63	60	55	50	43	36
3	KS4AN-1014	0.75	1.00	14	32	7.5	3.0	eters	98	91	88	84	77	70	60	50
4	KS4AN-1016	0.75	1.00	16	32	7.5	3.0		112	104	101	96	88	80	69	58
5	KS4AN-1518	1.10	1.50	18	32	10.5	4.0	Σ	126	117	113	108	99	90	77	65
6	KS4AN-1520	1.10	1.50	20	32	10.5	4.0	.5	140	130	126	120	110	100	86	72
7	KS4AN-2025	1.50	2.00	25	32	13.8	4.8	9	175	163	158	150	138	125	108	90
8	KS4AN-2030	1.50	2.00	30	32	13.8	4.8	a a	210	195	189	180	165	150	129	108
9	KS4AN-3034	2.20	3.00	34	32	19.8	6.9	Ξ	238	221	214	204	187	170	146	122
10	KS4AN-3040	2.20	3.00	40	32	19.8	6.9		280	260	252	240	220	200	172	144
	PERFORI VOLTAC			RT FOR 10												
0 11-					4EE 1 11/4	DE / 410	VOLIS	S - THREE	PHAS	E, 50 H	Z FRE	QUENC	Y, AC S	SUPPLY	<u> </u>	
	Pump Model	Power	Rating	No of	Outlet Size	Rated	Current pere)	LPM	PHAS 0	E, 50 H	Z FRE	30	36	SUPPLY 45	60	66
S. No.	Pump Model	Power	Rating		Outlet	Rated	Current									66
S. No.	Pump Model KS4BN - 0809		1	No of	Outlet Size	Rated (Am	Current pere)	LPM	0	15	24	30	36	45	60	
	<u> </u>	kW	НР	No of Stages	Outlet Size (mm)	Rated (Am	Current pere) 3PH	LPM	0	15 0.9	24	30 1.8	36 2.2	45 2.7	60 3.6	4.0
1	KS4BN-0809	kW 0.55	HP 0.75	No of Stages	Outlet Size (mm)	Rated (Am 1PH 6.2	Current pere) 3PH NA	LPM	0 0 67	15 0.9 62	24 1.4 57	30 1.8 51	36 2.2 45	45 2.7 34	60 3.6 16	4.0
1 2	KS4BN-0809 KS4BN-1010	kW 0.55 0.75	HP 0.75 1.00	No of Stages	Outlet Size (mm) 32 32	Rated (Am 1PH 6.2 7.5	Current pere) 3PH NA 3.0	LPM m³/h	0 0 67 74	15 0.9 62 69	24 1.4 57 63	30 1.8 51 57	36 2.2 45 50	45 2.7 34 38	60 3.6 16 18	4.0 7 8
1 2 3	KS4BN-0809 KS4BN-1010 KS4BN-1012	kW 0.55 0.75 0.75	HP 0.75 1.00 1.00	No of Stages 09 10 12	Outlet Size (mm) 32 32 32	Rated (Am 1PH 6.2 7.5 7.5	Current pere) 3PH NA 3.0 3.0	LPM m³/h	0 0 67 74 89	15 0.9 62 69 83	24 1.4 57 63 76	30 1.8 51 57 68	36 2.2 45 50 60	45 2.7 34 38 46	60 3.6 16 18 22	4.0 7 8 10
1 2 3 4	KS4BN-0809 KS4BN-1010 KS4BN-1012 KS4BN-1515	0.55 0.75 0.75 1.10	HP 0.75 1.00 1.00 1.50	No of Stages 09 10 12 15	Outlet Size (mm) 32 32 32 32	Rated (Am 1PH 6.2 7.5 7.5 10.5	Current pere) 3PH NA 3.0 3.0 4.0	LPM m³/h	0 67 74 89	15 0.9 62 69 83 104	24 1.4 57 63 76 95	30 1.8 51 57 68 86	36 2.2 45 50 60 75	45 2.7 34 38 46 57	60 3.6 16 18 22 27	4.0 7 8 10 12
1 2 3 4 5	KS4BN-0809 KS4BN-1010 KS4BN-1012 KS4BN-1515 KS4BN-1516	0.55 0.75 0.75 1.10	HP 0.75 1.00 1.50 1.50	No of Stages 09 10 12 15 16	Outlet Size (mm) 32 32 32 32 32 32	Rated (Am 1PH 6.2 7.5 7.5 10.5	Current pere) 3PH NA 3.0 3.0 4.0 4.0	Meters Meters	0 67 74 89 111 118	15 0.9 62 69 83 104 110	24 1.4 57 63 76 95 101	30 1.8 51 57 68 86 91	36 2.2 45 50 60 75 80	45 2.7 34 38 46 57 61	60 3.6 16 18 22 27 29	4.0 7 8 10 12 13
1 2 3 4 5 6	KS4BN-0809 KS4BN-1010 KS4BN-1012 KS4BN-1515 KS4BN-1516 KS4BN-1517	kW 0.55 0.75 0.75 1.10 1.10	HP 0.75 1.00 1.00 1.50 1.50 1.50	No of Stages 09 10 12 15 16 17	Outlet Size (mm) 32 32 32 32 32 32 32 32	Rated (Am 1PH 6.2 7.5 7.5 10.5 10.5	Current pere) 3PH NA 3.0 3.0 4.0 4.0 4.0	M C C C C C C C C C C C C C C C C C C C	0 67 74 89 111 118 126	15 0.9 62 69 83 104 110	24 1.4 57 63 76 95 101 107	30 1.8 51 57 68 86 91	36 2.2 45 50 60 75 80	45 2.7 34 38 46 57 61 65	60 3.6 16 18 22 27 29 31	4.0 7 8 10 12 13 14
1 2 3 4 5 6 7	KS4BN-0809 KS4BN-1010 KS4BN-1012 KS4BN-1515 KS4BN-1516 KS4BN-1517 KS4BN-2020	kW 0.55 0.75 0.75 1.10 1.10 1.50	HP 0.75 1.00 1.00 1.50 1.50 2.00	No of Stages 09 10 12 15 16 17 20	Outlet Size (mm) 32 32 32 32 32 32 32 32 32	Rated (Am 1PH 6.2 7.5 10.5 10.5 10.5 13.8	Current pere) 3PH NA 3.0 3.0 4.0 4.0 4.8	m³/h LPM o c t o c c c c c c c c c c c c	0 67 74 89 111 118 126 148	15 0.9 62 69 83 104 110 117	24 1.4 57 63 76 95 101 107 126	30 1.8 51 57 68 86 91 97	36 2.2 45 50 60 75 80 85 100	45 2.7 34 38 46 57 61 65 76	60 3.6 16 18 22 27 29 31 36	4.0 7 8 10 12 13 14 16
1 2 3 4 5 6 7 8 8	KS4BN-0809 KS4BN-1010 KS4BN-1012 KS4BN-1515 KS4BN-1516 KS4BN-1517 KS4BN-2020 KS4BN-2022	kW 0.55 0.75 0.75 1.10 1.10 1.50	HP 0.75 1.00 1.00 1.50 1.50 2.00 2.00	No of Stages 09 10 12 15 16 17 20 22	Outlet Size (mm) 32 32 32 32 32 32 32 32 32 3	Rated (Am 1PH 6.2 7.5 7.5 10.5 10.5 13.8	Current pere) 3PH NA 3.0 3.0 4.0 4.0 4.8 4.8	ma,/h Meters	0 67 74 89 111 118 126 148	15 0.9 62 69 83 104 110 117 138 152	24 1.4 57 63 76 95 101 107 126 139	30 1.8 51 57 68 86 91 97 114 125	36 2.2 45 50 60 75 80 85 100	45 2.7 34 38 46 57 61 65 76 84	60 3.6 16 18 22 27 29 31 36 40	4.0 7 8 10 12 13 14 16 18
1 2 3 4 5 6 7 8 9 9	KS4BN-0809 KS4BN-1010 KS4BN-1012 KS4BN-1515 KS4BN-1516 KS4BN-1517 KS4BN-2020 KS4BN-2020 KS4BN-3030	kW 0.55 0.75 0.75 1.10 1.10 1.50 1.50	HP 0.75 1.00 1.00 1.50 1.50 2.00 2.00 3.00	No of Stages 09 10 12 15 16 17 20 22 30	Outlet Size (mm) 32 32 32 32 32 32 32 32 32 3	Rated (Am 1PH 6.2 7.5 7.5 10.5 10.5 10.5 13.8 13.8 19.8	Current pere) 3PH NA 3.0 3.0 4.0 4.0 4.8 4.8 6.9	ead in Meters	0 67 74 89 111 118 126 148 163 222	15 0.9 62 69 83 104 110 117 138 152 207	24 1.4 57 63 76 95 101 107 126 139	30 1.8 51 57 68 86 91 97 114 125	36 2.2 45 50 60 75 80 85 100 110	45 2.7 34 38 46 57 61 65 76 84 114	60 3.6 16 18 22 27 29 31 36 40 54	4.0 7 8 10 12 13 14 16 18 24

	PERFORMANC							BLE PUM EE PHAS							AGE O	F
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	15	30	45	53	60	75	90
5. NO.	Pullip Model	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0	0.9	1.8	2.7	3.2	3.6	4.5	5.4
1	KS4C - 1009	0.75	1.00	09	38	7.5	3.0		73	70	68	59	54	50	37	23
2	KS4C - 1510	1.10	1.50	10	38	10.5	4.0		81	78	75	66	60	55	41	26
3	KS4C - 1512	1.10	1.50	12	38	10.5	4.0	v	97	94	90	79	72	66	49	31
4	KS4C-2014	1.50	2.00	14	38	13.8	4.8	9	113	109	105	92	84	77	57	36
5	KS4C-2016	1.50	2.00	16	38	13.8	4.8	e t	130	125	120	106	96	88	66	42
6	KS4C-3020	2.20	3.00	20	38	19.8	6.9	Σ	162	156	150	132	120	110	82	52
7	KS4C-3022	2.20	3.00	22	38	19.8	6.9	.=	178	172	165	145	132	121	90	57
8	KS4C-4030	3.00	4.00	30	38	23	9.0	•	243	234	225	198	180	165	123	78
9	KS4C - 5035	3.70	5.00	35	38	30	10.6	о О	284	273	263	231	210	193	144	91
10	KS4C - 5038	3.70	5.00	38	38	30	10.6	Ξ	308	296	285	251	228	209	156	99
11	KS4C - 6045	4.50	6.00	45	38	NA	12.6		365	351	338	297	270	248	185	117
12	KS4C - 8056	5.50	7.50	56	38	NA	15.5		450	430	400	350	320	290	215	138

	PERFORMANC							BLE PUM EE PHAS							AGE O	F
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	30	45	60	69	75	90	105
3. NO.	Fullip Model	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0	1.8	2.7	3.6	4.1	4.5	5.4	6.3
1	KS4D - 1509	1.10	1.50	09	38	10.5	4.0		72	66	58	47	41	34	22	9
2	KS4D-2010	1.50	2.00	10	38	13.8	4.8	s.	80	73	64	52	45	38	24	10
3	KS4D-3015	2.20	3.00	15	38	19.8	6.9	÷ e	120	110	96	78	68	57	36	15
4	KS4D-3017	2.20	3.00	17	38	19.8	6.9	e ∑	136	124	109	88	77	65	41	17
5	KS4D-4021	3.00	4.00	21	38	23	9.0	_	168	153	134	109	95	80	50	21
6	KS4D - 5025	3.70	5.00	25	38	30	10.6	-	200	183	160	130	113	95	60	25
7	KS4D - 5027	3.70	5.00	27	38	30	10.6	a D	216	197	173	140	122	103	65	27
8	KS4D-6032	4.50	6.00	32	38	NA	12.6	Η̈́	256	234	205	166	144	122	77	32
9	KS4D-8040	5.50	7.50	40	38	NA	15.5		320	292	256	208	180	152	96	40

								MERSIBL								
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	30	45	60	80	90	105	120
0.110.	, amp moder	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0	1.8	2.7	3.6	4.5	5.4	6.3	7.2
1	KS4E-1004	0.75	1.00	04	38	7.5	3.0		33	31	30	29	24	22	21	18
2	KS4E-1506	1.10	1.50	06	38	10.5	4.0		49	46	45	43	36	33	32	26
3	KS4E-2008	1.50	2.00	08	38	13.8	4.8	v	65	62	60	57	48	44	42	35
4	KS4E-3012	2.20	3.00	12	38	19.8	6.9	eter	98	92	89	86	71	66	63	53
5	KS4E-4016	3.00	4.00	16	38	23	9.0	Ž	130	123	119	114	95	88	84	70
6	KS4E-5020	3.70	5.00	20	38	30	10.6	Head in Meters	163	154	149	143	119	110	105	88
7	KS4E-5021	3.70	5.00	21	38	30	10.6	Ĕ	171	162	156	150	125	116	110	92
8	KS4E-6025	4.50	6.00	25	38	NA	12.6		203	193	186	179	149	138	131	110
9	KS4E-8030	5.50	7.50	30	38	NA	15.5		244	231	224	215	179	165	158	132
S. No.	VOLTAC		220 VO Rating	No of	Outlet Size	Rated	VOLTS Current pere)	- THREE	PHAS 0	30 BE, 50 H	Z FRE	QUENC 75	90	105	120	150
0.110.	r ump moder	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0.0	1.8	3.6	4.5	5.4	6.3	7.2	9.0
1	KS4F-2007	1.50	2.00	07	50	13.8	4.8	rs	55	53	48	43	41	35	31	18
2	KS4F-3010	2.20	3.00	10	50	19.8	6.9	lete	78	76	68	62	58	50	44	25
3	KS4F-4014	3.00	4.00	14	50	23	9.0	Head in Meters	110	106	95	87	82	70	62	35
4	KS4F-5018	3.70	5.00	18	50	30	10.6	ad	141	137	122	112	105	90	79	45
5	KS4F-8025	5.50	7.50	25	50	NA	15.5	ž	196	190	170	155	146	125	110	63
								MERSIBL - THREE								
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	60	90	120	150	170	180	240
J. 140.	. amp woder	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0	3.6	5.4	7.2	9.0	10.2	10.8	14.4
1	KS4G-2008	1.50	2.00	08	50	13.8	4.8		54	52	48	42	36	31	29	14
2	KS4G-3011	2.20	3.00	11	50	19.8	6.9	Head in Meters	74	71	65	58	50	42	40	19
3	KS4G-4015	3.00	4.00	15	50	23	9.0	Hea	101	97	89	80	68	57	55	26
	KS4G-5017	3.70	5.00	17	50	30	10.6	_				90	77	65	62	29

								MERSIBL								
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	60	120	180	240	300	360	420
S. NO.	Fullip Model	kW	HP	Stages	(mm)	1PH	зРН	m³/h	0	3.6	7.2	10.8	14.4	18.0	21.6	25.2
1	KS4H - 2006	1.50	2.00	06	50/65	13.8	4.8		32	30	27	24	21	17	12	6
2	KS4H-3007	2.20	3.00	07	50/65	19.8	6.9	w	38	35	32	28	24	20	14	7
3	KS4H - 3008	2.20	3.00	08	50/65	19.8	6.9	0 _	43	40	36	32	28	22	16	8
4	KS4H-3009	2.20	3.00	09	50/65	19.8	6.9	e t	48	45	41	36	31	25	18	9
5	KS4H-4010	3.00	4.00	10	50/65	23	9.0	Σ	54	50	46	40	35	28	20	10
6	KS4H-5012	3.70	5.00	12	50/65	30	10.6	=	64	60	55	48	41	34	24	12
7	KS4H - 5014	3.70	5.00	14	50/65	30	10.6	g a	75	70	64	56	48	39	28	14
8	KS4H-6015	4.50	6.00	15	50/65	NA	12.6	ø	80	75	68	60	52	42	30	15
9	KS4H-8020	5.50	7.50	20	50/65	NA	15.5	Ξ	107	100	91	80	69	56	40	20
	PERFORI VOLTAC							MERSIBLI 5 - THREE								
S. No.	Pump Model	Power	Rating	No of	Outlet Size		Current pere)	LPM	0	60	90	120	150	180	210	240
2	. amp model	kW	HP	Stages	(mm)	1PH	3PH	m³/h	0	3.6	5.4	7.2	9.0	10.8	12.6	14.4
1	KS4HF-2010	1.50	2.00	10	50	13.8	4.8	Head in	64	60	55	50	42	32	24	12
2	KS4HF-3015	2.20	3.00	15	50	19.8	6.9	Meters	96	90	83	75	63	48	36	18

	PERFOR VOLTAG								IERSIBL								
S. No.	Pump Model	Power	Rating	I NO O	of c	tlet F	Rated Co (Amp		LPM	0	20	40	60	90	120	150	170
3. 140.	rump woder	kW	HP	Stage			1PH	зРН	m³/h	0	1.2	2.4	3.6	5.4	7.2	9.0	10.2
1	KS4HF-5025	3.70	5.00	25	5	0	30.0	10.6	Head in Meters	192	188	178	166	140	105	60	23
	PERFORI VOLTAC																
VOLTAGE OF 220 VOLTS SINGLE PHASE / 415 VOLTS - THREE PHASE, 50 HZ FREQUENCY, AC SUPPLY S. No. Model Power Rating No of Stages No of																	
0.110.	Wiodei	kW	HP	Stages		1PI	н	3РН	m	/h	0	0.4	1.1	1.4	1.8	2.2	2.5
1	KS4HH - 1020	0.75	1.0	20	32	9.0		3.0	Hea	d in	138	130	126	105	95	80	56
2	KS4HH - 1525	1.1	1.5	25	32	12.	_	4.0	Me	ers	174	163	158	131	119	100	70
			1.0		02	12.	0	4.0			174	103	130	131	113	100	70
	PERFORM		CHAR	FOR 1	10 CM E	BOREV	VELL S	SUBME	RSIBLE SE, 50 H		SETS -	KS4 - I	BIGFLO	OW SEF			70
S No.		F	CHAR	T FOR 1	10 CM E 220 V	BOREV	VELL S SINGL	SUBME			SETS -	KS4 - I CY, AC	BIGFLO	OW SEF			105.0
S. No.	PERFORM.	<u> </u>	CHAR OLT	T FOR 1	10 CM E 220 V	BOREV	VELL S SINGL Rated (An	UBME E PHA	SE, 50 H	Z FRE	SETS -	KS4 - I CY, AC	BIGFLO SUPPL	OW SEF	RIES RA	TED	
S. No.		F	CHAR OLTA	T FOR 1 GE OF	10 CM E 220 V	BOREV DLTS - Del. Size	VELL S SINGL Rated (An	Current mp.)	SE, 50 H	Z FRE	SETS - EQUEN	KS4 - I CY, AC 30.0	BIGFLO SUPPL 45.0	OW SEF	75.0	90.0	105.0
	Pump Mode	I F	CHAR VOLTA Power I	T FOR 1 GE OF Rating	10 CM E 220 VC No of Stages	BOREV DLTS - Del. Size (mm)	VELL S SINGL Rated (An	Current mp.)	LPM m³/h	Z FRE	SETS - EQUEN 15.0	KS4 - I CY, AC 30.0	BIGFLO SUPPL 45.0 2.7	0W SEF Y 60.0	75.0 4.5	90.0 5.4	105.0
1	Pump Mode	I F	CHAR VOLTA Nower I kW 0.75 0.75 CHAR FED V	T FOR 1 GE OF Rating HP 1.0 1.0	10 CM E 220 VC No of Stages 08 10 CM E OF 41	Del. Size (mm) 38 38	VELL S SINGL Rated (An 11 8. 8.	Current mp.) PH .0 0 SUBM	LPM m³/h Head in Meters ERSIBLE	0 0 64 80 E PUM	2SETS - EQUEN 15.0 0.9 61 76 PSETS	30.0 30.0 1.8 58 72 - KS4 -	45.0 45.0 2.7 52 65 'B' HIC	0W SEF Y 60.0 3.2 43 54 GH HEA	75.0 4.5 32 40	90.0 5.4 18 23	105.0 6.3 6
1	Pump Mode BIGFLOW-100	I F I B B B B B B B B B B B B B B B B B	CHAR VOLTA Power I kW 0.75 0.75 CHAR FED V	T FOR 1 GE OF Rating HP 1.0 1.0 RT FOR DLTAGE	No of Stages 08 10 10 CM E 07 10 CM 10	BOREV DLTS - Del. Size (mm) 38 38 BORE 5 VOL	VELL S SINGL Rated (Ar 11 8. 8. WELL TS - TH	SUBME LE PHA Current mp.) PH 0 0 SUBM HREE F	LPM m³/h Head in Meters ERSIBLE PHASE, 5	0 0 64 80 E PUM 0 HZ I	2SETS - EQUEN 15.0 0.9 61 76 PSETS FREQUEN 5	30.0 1.8 58 72 - KS4 - ENCY, 1	45.0 45.0 2.7 52 65 'B' HICAC SUR	0W SEF Y 60.0 3.2 43 54 54 GH HEA	75.0 4.5 32 40 AD SERI	90.0 5.4 18 23	105.0 6.3 6 8
1 2 S. No.	Pump Mode BIGFLOW-100 BIGFLOW-101 PERFORM	I F F F F F F F F F F F F F F F F F F F	CHAR VOLTA V	FFOR 1.0 1.0 1.0 No of Stages	No of Stages 08 10 CM E 07 10 CM	Del. Size (mm) 38 38 BORE 5 VOL	VELL S SINGL Rated (An 11 8. 8. 8. WELL TS - TH	GUBME LE PHA Current mp.) PH .0 0 SUBM HREE F .0 M ³ /	LPM m³/h Head in Meters ERSIBLE PHASE, 5 M 0 h 0	0 0 64 80 E PUM 0 HZ I	2SETS - EQUEN 15.0 0.9 61 76 PSETS - FREQUEN 5 9 9	30.0 1.8 58 72 - KS4 - ENCY, 1	45.0 2.7 52 65 'B' HIQ AC SUR	0W SEF Y 60.0 3.2 43 54 GH HEA PPLY 33 2.2	75.0 4.5 32 40 AD SERI	90.0 5.4 18 23 IES 60 3.6	105.0 6.3 6 8
1 2	Pump Mode BIGFLOW-100 BIGFLOW-101	I F I B B B B B B B B B B B B B B B B B	CHAR VOLTA Power I kW 0.75 0.75 CHAR FED V	T FOR 1 GE OF Rating HP 1.0 1.0 RT FOR DLTAGE	No of Stages 08 10 10 CM E 07 10 CM 10	Del. Size (mm) 38 38 BORE 5 VOL	VELL S SINGL Rated (Ar 11 8. 8. WELL TS - TH	SUBME LE PHA Current mp.) PH 0 0 SUBM HREE F	LPM m³/h Head in Meters ERSIBLE PHASE, 5 M 0 d in 440	0 0 64 80 E PUM 0 HZ I 0.0	DSETS - EQUEN 15.0 0.9 61 76 PSETS - FREQUEN 5 9 16 (2000)	30.0 30.0 1.8 58 72 - KS4 - ENCY, 7	45.0 45.0 2.7 52 65 'B' HICAC SUR	0W SEF Y 60.0 3.2 43 54 54 GH HEA	75.0 4.5 32 40 AD SERI	90.0 5.4 18 23	105.0 6.3 6 8

FEATURES

Wide Voltage Range Operability

The motor is designed to withstand wide voltage variations from 180 - 240 Volts which reduces the chances of motor burning at low voltage.

High Efficiency and Energy-saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Longer and Trouble Free Life

High grade engineering materials like Graded Cast Iron Components, Stainless Steel Shaft, Noryl Impellers, Bronze Bushes, Heavy duty Carbon + SS Thrust Plate, 99.9 % pure Copper Winding Wires for longer and trouble free life.

Advanced Water Cooled Motors Designs

The motor is filled with potable water, protects from overheating and facilitates smoother and a trouble free operation for the years.

Sand Fighter Designs

Innovative Sand Fighter Design restricts the entry of sand in motors,protects bushes of pump and motor thus pumpset perform well in sandy borewells and increase life of pumpset.

CED - Cathodic Electro Deposition Coating

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Nationwide Service Network

Easy availability of spares and prompt after sales services through nationwide company Authorised Service Centers.

TECHNICAL SPECIFICATION

 Head Range
 Up to 165 Metres

 Discharge Range
 Up to 105 LPM

 Power Rating
 0.37 to 1.5 kW

(0.5 to 2.0 HP)

Voltage Range - 180 to 240 Volts (Single Phase)

Type of Cooling - Water Cooled Insulation - B Class
Protection - IP68

MATERIAL OF CONSTRUCTION

 Pump Housing
 Stainless Steel

 Pump Shaft
 Stainless Steel

 Motor Housing
 Stainless Steel

 Motor Shaft
 Stainless Steel

 Thrust Bearing
 Carbon + Stainless Steel

Pump/Motor Bushes - NBR / LTB

 Pump/Motor Bushes
 NBR / LTI

 Impeller
 Noryl

 Diffuser
 Noryl

 NRV
 Cast Iron

 Suction
 Cast Iron

- · Domestic and community water supply
- · Rural water supply
- Gardening and small farm irrigation
- Construction site
- Water supplies for high rise building

						CM BOREWE									
				.TAGE C	71 220	NEO 25		L, 50 I	21111	SOLING	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JOHNEL			
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	6	13	20	25	34	40	47
		kW	HP	Stages	(mm)	1Ø	m³/h	0	0.4	0.8	1.3	1.5	2.1	2.5	2.9
1	NEO 25 - 0510	0.37	0.50	10	32	5.8	≅8 ≅	67	65	64	60	48	45	30	14
2	NEO 25 - 1020	0.75	1.00	20	32	8.2	HEAD IN	134	130	128	120	97	90	60	27
3	NEO 25 - 1525	1.10	1.50	25	32	11.5	뿔	168	163	160	150	121	112	75	34
						NEO 30	SERIES								
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	6	18	24	30	36	42	48
S. NO.	Fullip Woder	kW	HP	Stages	(mm)	1Ø	m³/h	0	0.4	1.1	1.4	1.8	2.2	2.5	2.9
1	NEO 30 - 0507	0.37	0.50	7	32	5.8		49	46	44	42	39	35	30	25
2	NEO 30 - 1014	0.75	1.00	14	32	8.2	1 15	98	91	88	84	77	70	60	50
3	NEO 30 - 1016	0.75	1.00	16	32	8.2	HEAD IN METERS	112	104	101	96	88	80	69	58
4	NEO 30 - 1518	1.10	1.50	18	32	11.5	Z	126	117	113	108	99	90	77	65
5	NEO 30 - 1520	1.10	1.50	20	32	11.5	1 🖁	140	130	126	120	110	100	86	72
6	NEO 30 - 2025	1.50	2.00	25	32	15.0	[토	175	163	158	150	138	125	108	90
						NEO 35	SERIES								
		Power	Rating	No of	Outlet	Rated Current	LPM	0	12	23	28	35	42	58	64
S. No.	Pump Model	kW	HP	Stages	Size (mm)	1Ø	m³/h	0	0.7	1.4	1.7	2.1	2.5	3.5	3,8
- 1	NEO 35 - 1012	0.75	1.00	12	32	8.2		89	83	77	71	61	49	35	15
2	NEO 35 - 1515	1.10	1.50	15	32	11.5	#	111	104	96	89	76		4.4	19
3	NEO 35 - 1516	1.10	1.50	16	-00							70	61	44	
4			1.50	01	32	11.5	2	119	110	103	95	81	61 65	47	20
	NEO 35 - 1517	1.10	1.50	17	32	11.5 11.5	IN NI Q		110 117						
5	NEO 35 - 1517 NEO 35 - 2022	1.10 1.50					HEAD IN METERS	119		103	95	81	65	47	20
			1.50	17	32	11.5 15.0		119 126	117	103 109	95 100	81 87	65 70	47 50	20 22
5	NEO 35 - 2022	1.50	1.50	17 22 No of	32 32 Outlet	11.5		119 126	117	103 109	95 100	81 87	65 70	47 50	20 22
		1.50	1.50 2.00	17 22	32	11.5 15.0 NEO 60	SERIES	119 126 163	117	103 109 141	95 100 130	81 87 112	65 70 90	47 50 65	20 22 28
5	NEO 35 - 2022	1.50	1.50 2.00	17 22 No of	32 32 Outlet Size	11.5 15.0 NEO 60 Rated Current	SERIES LPM m³/h	119 126 163	117 152	103 109 141 30	95 100 130	81 87 112 60	65 70 90 72	47 50 65 90	20 22 28 105
5 S. No.	NEO 35 - 2022 Pump Model	1.50 Power	1.50 2.00 Rating	17 22 No of Stages	32 32 Outlet Size (mm)	11.5 15.0 NEO 60 Rated Current	SERIES LPM m³/h	119 126 163 0	117 152 15 0.9	103 109 141 30 1.8	95 100 130 45 2.7	81 87 112 60 3.6	65 70 90 72 4.3	47 50 65 90 5.4	20 22 28 105 6.3
5 S. No.	Pump Model NEO 60 - 1008	1.50 Power kW 0.75	1.50 2.00 Rating HP 1.00	17 22 No of Stages 8	32 32 Outlet Size (mm) 32	11.5 15.0 NEO 60 Rated Current 1Ø 8.2	SERIES LPM m³/h	119 126 163 0 0 62	117 152 15 0.9 59	103 109 141 30 1.8 56	95 100 130 45 2.7 50	81 87 112 60 3.6 41	65 70 90 72 4.3 32	47 50 65 90 5.4 18	20 22 28 105 6.3 6
5 S. No. 1 2	Pump Model NEO 60 - 1008 NEO 60 - 1010	1.50 Power kW 0.75 0.75	1.50 2.00 Rating HP 1.00	17 22 No of Stages 8 10	32 32 Outlet Size (mm) 32 32	11.5 15.0 NEO 60 Rated Current 1Ø 8.2 8.2	SERIES LPM m³/h	119 126 163 0 0 62 78	117 152 15 0.9 59 73	103 109 141 30 1.8 56 70	95 100 130 45 2.7 50	81 87 112 60 3.6 41 52	65 70 90 72 4.3 32 40	90 5.4 18 23	20 22 28 105 6.3 6
5 S. No. 1 2 3	Pump Model NEO 60 - 1008 NEO 60 - 1010 NEO 60 - 1512	1.50 Power kW 0.75 0.75 1.10	1.50 2.00 Rating HP 1.00 1.00	17 22 No of Stages 8 10 12	32 32 Outlet Size (mm) 32 32 32	11.5 15.0 NEO 60 Rated Current 1Ø 8.2 8.2 11.5	SERIES	119 126 163 0 0 62 78 93	117 152 15 0.9 59 73 89	103 109 141 30 1.8 56 70 84	95 100 130 45 2.7 50 60 75	81 87 112 60 3.6 41 52 62	70 90 72 4.3 32 40 48	47 50 65 90 5.4 18 23 27	20 22 28 105 6.3 6 8

SUBMERSIBLE PRODUCT RANGE

BOREWELL SUBMERSIBLE PUMPS 15 CM,17.5 CM, 20 CM & 22.5 CM

FEATURES

Wide Voltage Motor Designs with Copper Rotor

Motors are designed with extra overload capacities, more water spaces and engineered with 99.9% pure Electro Grade Copper rotor performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

Sand Fighter Designs

Innovative Sand Fighter Design restricts the entry of sand in motors, protects bushes of pump and motor thus pumpset perform well in sandy borewells and increase life of pumpset.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Longer and Trouble Free Life

High grade engineering materials like Graded Cast Iron Components, Stainless Steel Shaft, Noryl/Stainless Steel Impellers, Bronze Bushes, Heavy duty Carbon + SS Thrust Plate, 99.9 % Electro Grade Copper Rotor and Winding Wires for longer and trouble free life.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Glycol-mixed Water

Motors filled with specially developed Glycol mixed water to improve the anti-freezing properties of motor and prevent corrosion.

TECHNICAL SPECIFICATION

Head Range - Up to 276 Metres
Discharge Range - Up to 1540 LPM

Power Rating - 1.5 to 18.5 kW (2 to 25 HP)

Voltage Range - 160 to 240 Volts (Single Phase) 200 to 440 Volts (Three Phase)*

Insulation - B Class
Type of Cooling - Water Cooled

Protection - IP68

*Under ideal condition with suitable cable size.

MATERIAL OF CONSTRUCTION

- Stainless Steel / Norvi Impeller Diffuser - Cast Iron / Noryl Bowl/Stage casing - Cast Iron Pump Shaft - Stainless Steel Motor Housing - Stainless Steel Motor Shaft - Stainless Steel Finished Rotor - Copper - Cast Iron Suction - Cast Iron Pump / Motor Bushes - NBR / LTB

- Carbon + SS

APPLICATIONS

Thrust Bearing

- Irrigation in horticulture & agriculture
- · Domestic and community water supply
- Sprinkler and drip irrigation
- Rural water supply
- Ground water supply to water works

													RADIA	L FLOW	PUMPS
	PE					M BOREWELL							ES		
		AT R	ATED V	OLTAGE	OF 415 \	OLTS - THREE	PHASE,	50 Hz	FREQU	IENCY,	AC SU	PPLY			
S. No.	Model	Power	Rating	No. of	Outlet Size	Rated Current (ampere)	LPM	0	60	120	160	180	240	270	300
011101		kW	HP	Stages	(mm)	3Ø	m³/h	0.0	3.6	7.2	9.6	10.8	14.4	16.2	18.0
1	KS6 180 - 0205	1.5	2.0	5	50	4.5		48	46	41	36	35	24	18	9
2	KS6 180 - 0206	1.5	2.0	6	50	4.5		57	55	49	43	42	29	21	11
3	KS6 180 - 0408	3.0	4.0	8	50	8.5		76	74	65	57	56	39	28	15
4	KS6 180 - 0409	3.0	4.0	9	50	8.5		86	83	74	65	63	44	32	17
5	KS6 180 - 0410	3.0	4.0	10	50	8.5	ers	95	92	82	72	70	48	35	18
6	KS6 180 - 0411	3.0	4.0	11	50	8.5	Head in Meters	105	101	90	79	77	53	39	20
7	KS6 180 - 0512	3.7	5.0	12	50	10.0	Ē	114	110	98	86	84	58	42	22
8	KS6 180 - 0613	4.5	6.0	13	50	12.0	leac	124	120	106	93	91	63	46	24
9	KS6 180 - 0614	4.5	6.0	14	50	12.0	-	133	129	114	100	98	68	49	26
10	KS6 180 - 0615	4.5	6.0	15	50	12.0		143	138	123	108	105	73	53	28
11	KS6 180 - 0816	5.5	7.5	16	50	14.5		153	147	131	115	112	77	56	29
12	KS6 180 - 0820	5.5	7.5	20	50	14.5		191	184	163	143	140	97	70	37
13	KS6 180 - 1024	7.5	10.0	24	50	19.5		229	221	196	172	168	116	84	44
14	KS6 180 - 1330	9.3	12.5	30	50	25.0		286	276	245	215	210	145	105	55

RADIAL FLOW PUMPS

	PE					CM BOREWELI OLTS - THREE							S		
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	60	120	180	240	300	360	420
OI NOI	r amp model	kW	HP	Stages	(mm)	зрн	m³/h	0.0	3.6	7.2	10.8	14.4	18.0	21.6	25.2
1	KS6C' - 0405 3.0 4 KS6C' - 0506 3.7 5 KS6C' - 0607 4.5 6		3.0	3	50	6.5		34	33	32	30	27	21	17	8
2	KS6C' - 0405	3.0	4.0	5	50	8.5		57	55	53	50	44	35	28	14
3	KS6C' - 0506	3.7	5.0	6	50	10.0		68	66	63	60	53	42	33	17
4	KS6C' - 0607	4.5	6.0	7	50	12.0		79	77	74	70	62	49	39	19
5	KS6C' - 0808	5.5	7.5	8	50	14.5	S	91	88	84	80	71	56	44	22
6	KS6C' - 0809	5.5	7.5	9	50	14.5	t e	102	100	95	90	80	63	50	25
7	KS6C' - 0810	5.5	7.5	10	50	14.5	≥	113	111	106	100	89	69	56	28
8	KS6C' - 1011	7.5	10.0	11	50	19.5	_	125	122	116	110	98	76	61	31
9	KS6C' - 1012	7.5	10.0	12	50	19.5	_	136	133	127	120	107	83	67	33
10	KS6C' - 1313	9.3	12.5	13	50	25.0	ad	147	144	137	130	116	90	72	36
11	KS6C' - 1315	9.3	12.5	15	50	25.0	H e	170	166	158	150	133	104	83	42
12	KS6C' - 1516	11.0	15.0	16	50	29.0		181	177	169	160	142	111	89	44
13	KS6C' - 1516 1 KS6C' - 1518 1		15.0	18	50	29.0		204	199	190	180	160	125	100	50
14	KS6C' - 1820	13.0	17.5	20	50	34.0		227	221	211	200	178	139	111	56
15	KS6C' - 2024	15.0	20.0	24	50	39.0		272	265	253	240	213	167	133	67

RADIAL FLOW PUMPS

													IIADIA		. 0.00
	F					CM BOREWEI OLTS - THREE							S		
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	100	200	250	300	350	400	450
		kW	HP	Stages	(mm)	3Ø	m³/h	0.0	6	12	15	18	21	24	27
1	KS6C - 0505	3.7	5.0	5	50	10.0		60	59	53	50	45	40	34	26
2	KS6C-0606	4.5	6.0	6	50	12.0		71	70	63	59	54	47	40	31
3	KS6C-0807	5.5	7.5	7	50	14.5	w	83	82	74	69	63	55	47	36
4	KS6C-0808	5.5	7.5	8	50	14.5	9 -	95	94	84	79	72	63	54	42
5	KS6C-1010	7.5	10.0	10	50	19.5	<u>e</u>	119	117	105	99	90	79	67	52
6	KS6C-1312	9.3	12.5	12	50	25.0	Σ	143	140	126	119	108	95	80	62
7	KS6C - 1515	11.0	15.0	15	50	29.0	.=	179	176	158	149	135	119	101	78
8	KS6C - 1817	13.0	17.5	17	50	34.0	0	202	199	179	168	153	134	114	88
9	KS6C-2018	15.0	20.0	18	50	39.0	a a	214	211	189	178	162	142	121	94
10	KS6C - 2020	15.0	20.0	20	50	39.0	Ξ	238	234	210	198	180	158	134	104

MIX FLOW PUMPS

	PERFOR					REWELL SUB OLTS - THREE							SERIE	S	
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	200	300	350	400	450	500	600
OI IIIOI	T dilip illoudi	kW	HP	Stages	(mm)	ЗРН	m³/h	0.0	12.0	18.0	21.0	24.0	27.0	30.0	36.0
1	KS6D - 0504	3.7	3.7 5.0 4 3.7 5.0 5		65	10	s	51	48	45	43	39	36	31	19
2	KS6D - 0505	3.7	5.0	5	65	10	e r	64	59	56	53	49	45	39	23
3	KS6D - 0806	5.5	7.5	6	65	14.5	le t	77	71	68	64	59	54	47	28
4	KS6D - 1008	7.5	10.0	8	65	19.5	Σ	103	95	90	85	79	72	63	38
5	KS6D - 1310	9.3	12.5	10	65	25	<u>.</u>	128	119	113	106	98	89	78	47
6	KS6D - 1512	11.0	15.0	12	65	29	0	154	143	135	128	118	107	94	56
7	KS6D - 1814	13.0	17.5	14	65	34	e a	180	166	158	149	137	125	109	66
8	KS6D - 2016	15.0	20.0	16	65	39	Н	206	190	180	170	157	143	125	75

MIX FLOW PUMPS

	PERFOR					REWELL SUBI OLTS - THREE							SERIE	S	
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	240	360	480	600	720	840	900
0	kW HP Stages (mm) 3PH m³/h 0.0 14.4 21.6 28.8 36.0 43.2 50.4 54.0														
1	1 KS6EA - 0808 5.5 7.5 8 80 14.5 0 66 58 51 43 33 23 12 7														
2															9
3	KS6EA - 1312	9.3	12.5	12	80	25		100	86	77	65	49	35	18	11
4	KS6EA - 1515	11.0	15.0	15	80	29	Æ	125	108	96	81	62	44	23	13
5	KS6EA - 1817	13.0	17.5	17	80	34	ead	141	122	109	92	70	49	26	15
6	KS6EA - 2020	15.0	20.0	20	80	39	Ĭ	166	144	128	108	82	58	30	18

MIX FLOW PUMPS

MIX FLOW PUMPS

Power Rating Outlet Size (mm) Rated Current (Ampere) LPM S. No. Pump Model Stages kW HP m³/h 0.0 8.4 14.4 28.8 43.2 50.4 57.6 72.0 5.0 KS6G - 0502R 3.7 10.0 Meters KS6G - 0603R 6.0 12.0 KS6G - 0804R 5.5 7.5 14.5 KS6G - 1005R 7.5 10.0 19.5 KS6G - 1306R 9.3 12.5 25.0 KS6G - 1507R 29.0 11.0 Head KS6G - 1808R 13.0 17.5 34.0 KS6G - 2010R 20.0 39.0

MIX FLOW PUMPS

	PERFO					REWELL SUB OLTS - THREE							SERIE	8	
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	340	540	740	940	1140	1340	1540
OI NOI	r ump model	kW	HP	Stages	(mm)	ЗРН	m³/h	0.0	20.4	32.4	44.4	56.4	68.4	80.4	92.4
1	KS6J - 0803	5.5	7.5	3	100	14.5	s	36	34	31	28	24	20	16	11
2	KS6J = 1004	7.5	7.5 10.0		100	19.5	9.19	48	45	41	37	32	27	21	14
3	KS6J - 1305	9.3	7.5 10.0		100	25.0	Met	61	56	52	47	40	34	27	18
4	KS6J = 1506	11.0	15.0	6	100	29.0	-	73	67	62	56	48	40	32	21
5	KS6J = 1807	13.0	17.5	7	100	34.0	9	85	78	72	65	56	47	37	25
6	KS6J = 2008	15.0	20.0	8	100	39.0	Неа	97	90	82	74	64	54	42	28
7	KS6J = 2510	18.5	25.0	10	100	48.0		121	112	103	93	80	67	53	35

Vater Cooled

FEATURES

Wide Voltage Motor Designs with Copper Rotor

Motors are designed with extra overload capacities, more water spaces and engineered with 99.9% pure Electro Grade Copper rotor performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

Sand Fighter Designs

Innovative Sand Fighter Design restricts the entry of sand in motors, protects bushes of pump and motor thus pumpset perform well in sandy borewells and increase life of pumpset.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Longer and Trouble Free Life

High grade engineering materials like Graded Cast Iron Components, Stainless Steel Shaft, Stainless Steel Impellers, Bronze Bushes, Heavy duty Carbon + SS Thrust Plate, 99.9 % Electro Grade Copper Rotor and Winding Wires for longer and trouble free life.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Glycol-mixed Water

Motors filled with specially developed Glycol mixed water to improve the anti-freezing properties of motor and prevent corrosion.

TECHNICAL SPECIFICATION

Head Range - Up to 81 Metres

Discharge Range - Up to 2100 LPM

Power Rating - 4.5 to 18.5 kW (6 to 25 HP)

Voltage Range - 280 to 440 Volts (Three Phase)

Insulation - B Class
Type of Cooling - Water Cooled
Protection - IP68

MATERIAL OF CONSTRUCTION

Impeller - Stainless Steel Bowl / Stage Casing - Cast Iron - Stainless Steel Pump Shaft Motor Body - Stainless Steel Motor Shaft - Stainless Steel Finished Rotor - Copper NRV - Cast Iron Suction - Cast Iron Pump / Motor Bushes - NBR / LTB Thrust Bearing - Carbon + SS

- · Irrigation in horticulture & agriculture
- Domestic and community water supply
- Sprinkler and drip irrigation
- Rural water supply
- Ground water supply to water works

	PE					7.5 CM BORE 415 VOLTS - T								IES		
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	900	1000	1100	1200	1300	1400	1500	1600
01.1101	r amp model	kW	Store		(mm)	зрн	m³/h	0	54	60	66	72	78	84	90	96
1	KS7P - 0602	4.5	6.0	2	100	12.0		26	19	18	16	15	14	11	9	6
2	KS7P - 0803	5.5	7.5	3	100	14.5	METERS	39	28	26	25	23	20	17	14	9
3	KS7P - 1004	7.5	10.0	4	100	19.5	<u> </u>	52	38	35	33	30	27	22	18	12
4	KS7P = 1305	9.3	12.5	5	100	25.0	z	65	47	44	41	38	34	28	23	15
5	KS7P - 1506	11.0	15.0	6	100	29.0	AD	78	56	53	49	46	41	34	28	18
6	KS7P = 1807	13.0	17.5	7	100	34.0	Ē	91	66	62	57	53	48	39	32	21
7	KS7P = 2008	15.0	20.0	8	100	39.0	_	104	75	70	66	61	54	45	37	24

	PE					17.5 CM BORE 415 VOLTS - T								IES		
S. No.	Pump Model	Power	Rating	No of	Cine	Rated Current (Ampere)	LPM	0	800	900	1000	1200	1400	1500	1600	1700
3.140.	' kW H			Stages	(mm)	3PH	m³/h	0	48	54	60	72	84	90	96	102
1	KS7P - 1003	7.5	10.0	3	100	19.5	≅ S	45	32	31	29	26	20	17	14	11
2	KS7P - 1304	9.3	12.5	4	100	25.0	E E	60	43	41	39	34	27	23	19	14
3	KS7P - 1505	11.0	15.0	5	100	29.0	HEA	75	54	51	49	43	34	29	24	18
3 KS7P-1505 11.0 15.0 5 100 29.0													40	33	25	

	PE					7.5 CM BORE 415 VOLTS - T								RIES		
S. No. Pump Model Stages Size (Ampere)														1850		
OI NOI	r ump mouci	kW	HP	Stages	(mm)	зрн	m³/h	0	36	48	60	72	84	96	108	111
1	KS7P - 0802	5.5	7.5	2	100	14.5		33	27	25	23	21	18	14	9	7
2	KS7P = 1303	9.3	12.5	3	100	25.0	≅ £	49	41	38	34	31	26	21	13	11
3	KS7P = 1504	11.0	15.0	4	100	29.0	유민	66	54	50	46	42	35	28	18	14
4	KS7P - 2506	18.5	25.0	6	100	48.0	HE/	99	81	75	68	62	53	41	26	21

	Pi					17.5 CM BOR 415 VOLTS - T								ES		
S. No.	Pump Model	Power	Rating	10 01	Outlet Size	Rated Current (Ampere)	LPM	0	900	1100	1300	1500	1700	1900	2000	2100
	· amp model	kW	HP	Stages	(mm)	зрн	m³/h	0	54	66	78	90	102	114	120	126
1	KS7C - 1002	7.5	10.0	2	100	19.5	2 €	34	27	25	23	21	19	15	13	11
2	KS7C = 1503	11.0	15.0	3	100	29.0	유밑	52	40	37	34	32	28	23	20	16
3	KS7C - 2004	15.0	20.0	4	100	39.0	HE	69	53	49	45	43	37	31	27	21

						FOR 17. OF 415														
s.	No. Pump Model No. Pump Model Pum																			
No.	Fullip Model	kW	HP		(mm)	3PH	m³/h	0.0	30.0	36.0	42.0	48.0	54.0	60.0	66.0	72.0	78.0	84.0	90.0	96.0
1	KS7P - 0602	4.5	6.0	2	100	12.0	3.5	30	-	25	24	22	21	20	19	17	15	13	-	-
2	KS7P - 1302	9.3	12.5	2	100	25.0	TE	34	-	28	27	26	25	24	23	22	20	19	17	15
3	KS7C - 0802	5.5	7.5	2	100	14.5	Z	30	-	26	25	24	23	22	21	19	17	16	-	-
4	KS7C - 1303	9.3	12.5	3	100	25.0	AD I	46	40	38	37	36	34	33	31	29	26	23	-	-
5	KS7C - 1804	13.0	17.5	4	100	34.0	HE	61	53	51	49	47	45	44	41	39	35	31	-	-

KS8

20 CM BOREWELL SUBMERSIBLE PUMPS

FEATURES

Wide Voltage Motor Designs with Copper Rotor

Motors are designed with extra overload capacities, more water spaces and engineered with 99.9% pure Electro Grade Copper rotor performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

Sand Fighter Designs

Innovative Sand Fighter Design restricts the entry of sand in motors, protects bushes of pump and motor thus pumpset perform well in sandy borewells and increase life of pumpset.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Longer and Trouble Free Life

High grade engineering materials like Graded Cast Iron Components, Stainless Steel Shaft, Stainless Steel Impellers, Bronze Bushes, Heavy duty Carbon + SS Thrust Plate, 99.9 % Electro Grade Copper Rotor and Winding Wires for longer and trouble free life

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED coated.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Glycol-mixed Water

Motors filled with specially developed Glycol mixed water to improve the anti-freezing properties of motor and prevent corrosion.

TECHNICAL SPECIFICATION

 Head
 Up to 270 Metres

 Discharge Range
 Up to 2700 LPM

 Power Rating
 4.5 to 45 kW / 6 to 60 HP

 Voltage Range
 280 to 440 Volts (Three Phase)

 Insulation
 B Class

 Type of Cooling
 Water Cooled

MATERIAL OF CONSTRUCTION

IP68

Impeller - Stainless Steel Diffuser Casing/Bowl - Cast Iron Diffuser - Cast Iron Pump Shaft - Stainless Steel Motor Body - Stainless Steel Motor Shaft - Stainless Steel Finished Rotor - Copper NRV - Cast Iron Suction - Cast Iron Pump / Motor Bushes - NBR / LTB Thrust Bearing - Carbon + SS

APPLICATIONS

Protection

- Irrigation in horticulture & agriculture
- Domestic and community water supply
- Sprinkler and drip irrigation
- Rural water supply
- Ground water supply to water works

PER	FORMANCE (CHART				SUBMERSIBL					KS8D	AT RA	TED VC	LTAGE	OF
				415 VOL	TS - THRI	EE PHASE, 50	HZ FREG	MENC	, AC S	UPPLY					
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	300	400	500	600	700	800	950
3, 140.	rump woder	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	18.0	24.0	30.0	36.0	42.0	48.0	57.0
1	KS8D - 1004	7.5	10.0	4	80	19.5	v	82	74	70	64	56	47	37	15
2	KS8D - 1305	9.3	12.5	5	80	25.0	9	102	90	87	80	70	58	45	19
3	KS8D - 1506	11.0	15.0	6	80	29.0	<u>e</u>	122	109	103	96	85	70	53	23
4	KS8D - 1807	13.0	17.5	7	80	34.0	Σ	143	127	120	111	99	81	62	27
5	KS8D-2008	15.0	20.0	8	80	39.0	<u>.</u>	163	145	138	128	111	92	70	30
6	KS8D - 2510	18.5	25.0	10	80	48.0	o a	204	180	172	160	140	118	90	38
7	KS8D-3012	22.0	30.0	12	80	57.0	o o	245	218	208	191	169	140	108	46
8	KS8D - 3514	26.0	35.0	14	80	66.0	Ξ	286	255	240	223	196	163	125	53

٥	K30D-3314	20.0	33.0	14	00	00.0		200	200	240	220	130	100	120	33
PER	FORMANCE (CHART				SUBMERSIBL EE PHASE, 50) KS8E	AT RA	TED VO	LTAGE	OF
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	240	360	480	650	720	840	960
3.110.	rump woder	kW	HP	Stages	(mm)	(Ampere)	m³/h	0	14.4	21.6	28.8	39.0	43.2	50.4	57.6
1	KS8E-1003	7.5	10.0	3	80	19.5		60	58	54	50	40	35	24	12
2	KS8E-1504	11.0	15.0	4	80	29.0	w w	80	77	72	67	55	46	32	15
3	KS8E-1805	13.0	17.5	5	80	34.0	e _	100	97	90	83	69	58	40	19
4	KS8E-2006	15.0	20.0	6	80	39.0	e t	120	116	108	100	80	69	48	23
5	KS8E-2507	18.5	25.0	7	80	48.0	Σ	141	135	127	117	95	81	57	27
6	KS8E-3009	22.0	30.0	9	80	57.0	<u>.</u>	181	174	163	150	121	104	73	35
7	KS8E-3510	26.0	35.0	10	80	66.0	ō	201	193	181	167	136	115	81	38
8	KS8E-4012	30.0	40.0	12	80	76.0	e e	241	232	217	200	162	138	97	46
9	KS8E-4513	33.0	45.0	13	80	82.0	Ξ	261	251	235	217	176	150	105	50
10	KS8E-5014	37.0	50.0	14	80	85.0		281	270	253	234	190	162	113	54

Pi	ERFORMANC	E CHAF				L SUBMERSIE EE PHASE, 50					(S8F A	Γ RATE	D VOL	TAGE C	F
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	700	900	1100	1300	1500	1700	1900
3. 110.	rump woder	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	42.0	54.0	66.0	78.0	90.0	102.0	114.0
1	KS8F-2004	15.0	20.0	4	100	39.0	w	75	63	59	54	48	40	31	19
2	KS8F-2505	18.5	18.5 25.0		100	48.0	Б	94	79	74	68	60	50	38	24
3	KS8F-3006	22.0	30.0	6	100	57.0	e t	113	95	89	82	72	60	46	29
4	KS8F-3507	26.0	35.0	7	100	66.0	Σ	132	111	104	95	83	70	54	33
5	KS8F-4008	30.0	40.0	8	100	76.0	<u>.</u>	151	127	119	109	95	80	61	38
6	KS8F-4509	33.0	45.0	9	100	82.0	0	170	143	134	122	107	90	69	43
7	KS8F-5010	37.0	50.0	10	100	85.0	<u>ө</u>	189	158	148	136	119	100	77	48
8	KS8F-6012	45.0	60.0	12	100	100.0	Ξ	226	190	178	163	143	120	92	57

PE	ERFORMANCE	E CHAF				L SUBMERSIE EE PHASE, 50					(S8G A	T RATE	D VOL	rage c	F
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	500	800	1000	1200	1400	1500	1600
3. 140.	rump woder	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	30.0	48.0	60.0	72.0	84.0	90.0	96.0
1 KS8G-1303 9.3 12.5 3 100 25.0 58 49 43 39 35 27 23													23	19	
2	0 0 0 0 0 0														
3	KS8G - 2005	15.0	20.0	5	100	39.0	9	96	82	72	65	58	45	38	32
4	KS8G - 2506	18.5	25.0	6	100	48.0	e t	115	99	87	78	69	54	46	38
5	KS8G - 3007	22.0	30.0	7	100	57.0	Σ	135	115	101	91	81	63	54	44
6	KS8G - 3508	26.0	35.0	8	100	66.0	.5	154	132	116	104	92	72	61	51
7	KS8G - 4009	30.0	40.0	9	100	76.0	0	173	148	130	117	104	81	69	57
8	KS8G - 4510	33.0	45.0	10	100	82.0	<u>ө</u>	192	164	144	130	116	90	77	63
9	KS8G - 5012	37.0	50.0	12	100	85.0	Ξ	231	197	173	156	139	108	92	76

PE	ERFORMANC	E CHAF				L SUBMERSIE EE PHASE, 50					(S8P A	T RATE	D VOL	TAGE C	F
S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	750	950	1150	1350	1550	1750	1800
OI NOI	r ump model	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	45.0	57.0	69.0	81.0	93.0	105.0	108.0
1	KS8P-1302	9.3	12.5	2	100	25.0	S.	48	41	38	36	32	28	23	21
2	KS8P-2504	18.5	25.0	4	100	48.0	Mete	95	82	77	71	64	55	46	42
3	KS8P-3005	22.0	30.0	5	100	57.0	Ë	119	103	96	89	80	69	57	53
4	KS8P-4006	30.0	40.0	6	100	76.0	ead	143	124	115	107	96	83	68	64
5	KS8P-5008	37.0	50.0	8	100	85.0	ž	190	165	154	142	128	110	91	85

PERFORMANCE CHART FOR 20 CM BOREWELL SUBMERSIBLE PUMPSETS (MIX FLOW) KS8B - 'A' AT RATED VOLTAGE OF 415 VOLTS - THREE PHASE, 50 HZ FREQUENCY, AC SUPPLY

S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	800	1100	1400	1700	2000	2300	2700
3.110.	r ump woder	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	48.0	66.0	84.0	102.0	120.0	138.0	162.0
- 1	KS8B-1502	11.0	15.0	2	125	29.0		37	36	32	30	26	22	16	9
2	KS8B-3004	22.0	30.0	4	125	57.0	ad in eters	73	71	65	59	53	45	32	18
3	KS8B-4005	30.0	40.0	5	125	76.0	Head	92	89	81	74	66	56	40	22
4	KS8B-5006	37.0	50.0	6	125	85.0	_	110	107	97	89	79	67	48	26

PERFORMANCE CHART FOR 20 CM BOREWELL SUBMERSIBLE PUMPSETS (MIX FLOW) KS8B - 'B' AT RATED VOLTAGE OF 415 VOLTS - THREE PHASE, 50 HZ FREQUENCY, AC SUPPLY

S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	900	1200	1500	1800	2100	2400	2700
0.110.	KS8B-1802	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	54.0	72.0	90.0	108.0	126.0	144.0	162.0
1	KS8B - 1802	13.0	17.5	2	125	34.0		39	35	34	31	28	24	19	12
2	KS8B-2003	15.0	20.0	3	125	39.0	d in	59	53	51	47	42	36	28	18
3	KS8B - 3504	26.0	35.0	4	125	66.0	Head	79	70	68	62	56	48	38	24
4	KS8B - 4505	33.0	45.0	5	125	66.0 82.0	_	99	88	85	78	70	60	47	30

PERFORMANCE CHART FOR 20 CM BOREWELL SUBMERSIBLE PUMPSETS (MIXED FLOW) KS8B - 'C' AT RATED VOLTAGE OF 415 VOLTS - THREE PHASE, 50 HZ FREQUENCY, AC SUPPLY

S. No.	Pump Model	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	1300	1500	1700	1900	2100	2300	2400
oror	, amp moust	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	78.0	90.0	102.0	114.0	126.0	138.0	144.0
1	KS8B-2002	15.0	20.0	2	125 39.0		S IS	43	30	29	27	24	22	18	16
2	KS8B-2503	18.5	25.0	3	125 48.0		Meter	65	45	44	41	36	33	27	24
3	KS8B-4004	30.0	40.0	4	125	76.0	Ë	86	60	58	54	48	44	36	32
4	KS8B - 5005	37.0	50.0	5	125	85.0	Head	108	75	73	68	60	55	45	40
5	KS8B-6006	45.0	60.0	6	125	100.0	ž	129	90	87	81	72	66	54	48

	PERI	FORM	IANCE	CHAR		20 CM B 115 VOLT										(S8 A	Γ RAT	ED VC	LTAG	E OF		
s.	Pump	Power	Rating		Outlet Size	Rated Current	LPM	0	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800
No.	Model	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	30.0	36.0	42.0	48.0	54.0	60.0	66.0	72.0	78.0	84.0	90.0	96.0	102.0	108.0
1	KS8P-0602	4.5	6.0	2	100	12.0		34	27	26	24	23	22	20	17	14	11	-	-	-	-	-
2	KS8P-1003	7.5	10.0	3	100	19.5		50	40	38	36	34	32	29	26	22	18	-	-	-	-	-
3	KS8P-1304	9.3	12.5	4	100	25.0	ø	66	53	51	48	45	43	39	35	29	24	-	-	-	-	-
4	KS8P-0802	5.5	7.5	2	100	14.5	e 7.	38	-	-	29	27	26	24	23	20	17	14	11	-	-	-
5	KS8P-1303	9.3	12.5	3	100	25.0	e t	61	-	-	49	48	47	45	43	40	36	33	29	-	-	-
6	KS8P-1504	11.0	15.0	4	100	29.0	Σ	76	-	-	58	54	52	48	46	40	34	28	22	-	-	-
7	KS8P-1002	7.5	10.0	2	100	19.5	<u>=</u>	45	-	-	-	35	34	32	31	29	26	24	21	19	-	-
8	KS8P-1503	11.0	15.0	3	100	29.0	ъ	67	-	-	-	54	52	50	47	45	41	37	33	29	-	-
9	KS8P-2004	15.0	20.0	4	100	39.0	e a	89	-	-	-	69	68	64	62	58	52	48	42	37	-	-
10	KS8P-1502	11.0	15.0	2	100	29.0	I	51	-	-	-	-	42	41	39	38	36	34	32	29	26	-
11	KS8P-2003	15.0	20.0	3	100	39.0		77	-	-	-	-	60	58	56	54	52	49	45	41	37	-
12	KS8P-2503	18.5	25.0	3	100	48.0		81	-					59	57	55	53	50	46	43	39	35

KS9

22.5 CM BOREWELL SUBMERSIBLE PUMPS

FEATURES

Wide Voltage Motor Designs with Copper Rotor

Motors are designed with extra overload capacities, more water spaces and engineered with 99.9% pure Electro Grade Copper rotor performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is

Longer and Trouble Free Life

High grade engineering materials like Graded Cast Iron Components, Stainless Steel Shaft, Stainless Steel Impellers, Bronze Bushes, Heavy duty Carbon + SS Thrust Plate, 99.9 % Electro Grade Copper Rotor and Winding Wires for longer and trouble

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

CED - Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Glycol-mixed Water

Motors filled with specially developed Glycol mixed water to improve the anti-freezing Ground water supply to water works properties of motor and prevent corrosion,

Advanced Water Cooled Motors Designs

The motor is filled with potable water, protects from overheating and facilitates smoother and trouble free operation for the years.

TECHNICAL SPECIFICATION

Head - Up to 114 Metres Discharge Range Up to 3150 LPM Power Rating 15 to 45 kW / 20 to 60 HP

Voltage Range 350 to 440 Volts (Three Phase) Insulation B Class

Type of Cooling Water Cooled Protection IP68

MATERIAL OF CONSTRUCTION

Impeller - Stainless Steel Stage Casing/Bowl - Cast Iron Pump Shaft - Stainless Steel Motor Body - Stainless Steel Motor Shaft - Stainless Steel Finished Rotor - Copper NRV - Cast Iron Suction - Cast Iron Pump / Motor Bushes - LTB

APPLICATIONS

Thrust Bearing

- Irrigation in horticulture & agriculture
- Domestic and community water supply

- Carbon + SS

- Sprinkler and drip irrigation
- · Rural water supply

	PE					CM BOREWEI							ES		
S No	Model Stages ,														
S. No. Model July Up Stages Size (Allipere)														189	
1	KS9A - 2502	KW HP (mm) 3PH m³/h 0 78 96 114 132 15												27	20
2	KS9A - 4003	30.0	40.0	3	125	76.0	Met	82	68	64	60	55	49	40	30
3	KS9A - 5004	37.0	50.0	4	125	85.0	ad in	110	91	86	80	73	65	54	40
4	KS9A - 6005	45.0	60.0	5	125	100.0	Hea	137	114	107	100	91	81	67	50

	PE					CM BOREWEI OLTS - THREE							ES		
S. No.	Pump	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	1800	2000	2200	2400	2600	2800	3000
OI MOI	Model kW HP Stages (mm) 3PH m³/h 0 108 120 132 144 156 168 180														
1	3FI II/II U 108 120 132 144 150 168 180														
2	KS9C - 3003	22.0	30.0	3	125	57.0	Meters	75	55	52	48	44	39	33	28
3	KS9C - 4004	30.0	40.0	4	125	76.0	<u></u>	99	73	69	64	58	52	45	38
4	KS9C - 5005	37.0	50.0	5	125	85.0	Head	124	91	86	81	73	66	56	47
5	KS9C - 6006	45.0	60.0	6	125	100.0	He	149	110	103	97	88	79	67	56

HHF

HHF/HHN

15 CM HIGH HEAD SUBMERSIBLE PUMPS

FEATURES

Wide Voltage Motor Designs with Copper Rotor

Motors are designed with extra overload capacities, more water spaces and engineered with 99.9% pure Electro Grade Copper rotor performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

Sand Fighter Designs

Innovative Sand Fighter Design restricts the entry of sand in motors, protects bushes of pump and motor thus pumpset perform well in sandy borewells and increase life of

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is

Longer and Trouble Free Life

High grade engineering materials like Graded Cast Iron Components, Stainless Steel Shaft, Stainless Steel/ Noryl Impellers, Bronze Bushes, Heavy duty Carbon + SS Thrust Plate, 99,9 % Electro Grade Copper Rotor and Winding Wires for longer and trouble free life.

High Head Applications

The pump has been designed to deliver large volumes of water for high head applications, helping customers to achieve high turnaround time and productivity.

CED-Cathodic Electro Deposition

CED is the latest coating technology for corrosion resistance with uniform coating, provides 5 times more protection over conventional painting, resulting in longer life. All major CI parts of Kirloskar pumps coming in contact with the water are CED

Design to Prevent Overloading
Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

Glycol-mixed Water

Motors filled with specially developed Glycol mixed water to improve the anti-freezing properties of motor and prevent corrosion.

TECHNICAL SPECIFICATION

Up to 427 Metres Head Discharge Range Up to 650 LPM Power Rating

2.2 to 18.5 kW / 3 to 25 HP Voltage Range 200 to 440 Volts (Three Phase)* Insulation B Class

Type of Cooling Water Cooled Protection IP68

*Under ideal condition with suitable cable size.

MATERIAL OF CONSTRUCTION

Impeller	-	Noryl	Stainless Steel
Diffuser	-	Noryl	Stainless Steel
Diffuser Casing	-	Cast Iron	Stainless Steel
Pump Shaft	-	Stainless Steel	Stainless Steel
Motor Body	-	Stainless Steel	Stainless Steel
Motor Shaft	-	Stainless Steel	Stainless Steel
Finished Rotor	-	Copper	Copper
NRV	-	Cast Iron	Cast Iron
Suction	-	Cast Iron	Cast Iron
Pump / Motor Bushes	-	NBR / LTB	NBR / LTB
Thrust Bearing	-	Carbon + SS	Carbon + SS
DOL	-	Cast Iron	Cast Iron

- Irrigation in horticulture & agriculture
- Domestic and community water supply
- Sprinkler and drip irrigation
- Rural water supply
- · Ground water supply to water works

	PEF					M BOREWELL OLTS - THREE							ES		
S. No.	Pump Model	Power	Rating	No of Stages	Outlet Size	Rated Current (Ampere)	LPM	0	120	150	180	210	240	270	300
	Wodel	kW	HP	Stages	(mm)	3Ø	m³/h	0.0	7.2	9.0	10.8	12.6	14.4	16.2	18.0
- 1	60HHN = 0305	2.2	3.0	5	50	6.5		61	57	55	52	49	44	40	35
2	60HHN - 0407	3.0	4.0	7	50	8.5		85	80	77	73	69	62	56	49
3	60HHN - 0508	3.7	5.0	8	50	10.0	SIS.	97	91	88	83	78	71	64	56
4	60HHN - 0610	4.5	6.0	10	50	12.0	Meters	121	114	110	104	98	89	80	70
5	60HHN - 0812	5.5	7.5	12	50	14.5	<u></u>	146	137	132	125	118	106	96	84
6	60HHN - 1016	7.5	10.0	16	50	19.5		194	182	176	166	157	142	128	112
7	60HHN - 1319	9.3	12.5	19	50	25.0	Head	230	217	209	198	186	168	152	133
8	60HHN = 1524	11.0	15.0	24	50	29.0		291	274	264	250	235	212	192	168
9	60HHN = 1829	13.0	17.5	29	50	34.0		352	331	319	302	284	257	232	203

PERFORMANCE CHART FOR 15 CM BOREWELL SUBMERSIBLE PUMPSETS - 80HHN SERIES AT RATED VOLTAGE OF 415 VOLTS - THREE PHASE, 50 Hz FREQUENCY, AC SUPPLY															
S. No.	Pump	Power	Rating	No of	Outlet Size	Rated Current (Ampere)	LPM	0	60	120	180	240	300	360	420
OI NOI	Model	kW	HP	Stages	(mm)	3Ø	m³/h	0	3,6	7.2	11,5	14.4	18	21.6	25.2
1	80HHN - 0304	2.2	3.0	4	50	6.5	Head in Meters	56	55	52	48	43	38	29	20
2	80HHN = 0405	3.0	4.0	5	50	8.5		70	68	65	60	54	47	36	24
3	80HHN = 0506	3.7	5.0	6	50	10.0		84	82	78	72	65	56	44	29
4	80HHN = 0608	4.5	6.0	8	50	12.0		112	109	103	95	87	75	58	39
5	80HHN = 0810	5.5	7.5	10	50	14.5		140	137	129	119	108	94	73	49
6	80HHN = 1012	7.5	10.0	12	50	19.5		169	164	155	143	130	113	88	59
7	80HHN = 1315	9.3	12.5	15	50	25.0		211	205	194	179	163	141	109	73
8	80HHN = 1518	11.0	15.0	18	50	29.0		253	246	233	215	195	169	131	88
9	80HHN - 1821	13.0	17.5	21	50	34.0		295	287	271	250	228	197	153	102
10	80HHN - 2024	15.0	20.0	24	50	39.0		337	328	310	286	260	225	175	117

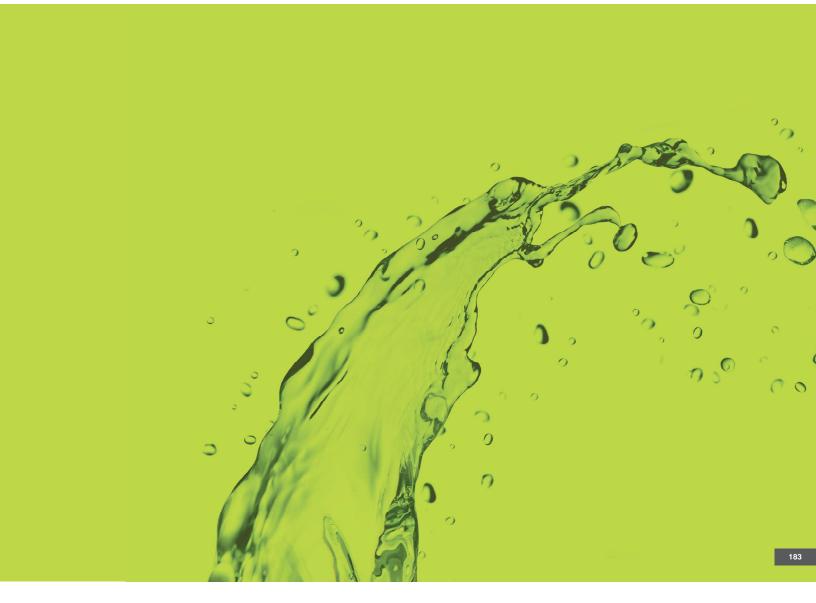
PERFORMANCE CHART FOR 15 CM BOREWELL SUBMERSIBLE PUMPSETS - 100HHN SERIES AT RATED VOLTAGE OF 415 VOLTS - THREE PHASE, 50 Hz FREQUENCY, AC SUPPLY															
S. No.	Pump Model	Power Rating		No of Stages	Outlet Size	Rated Current (Ampere)	LPM	0	120	180	240	300	360	420	480
	Wodei	kW	HP	Stages	(mm)	3Ø	m³/h	0.0	7.2	10.8	14.4	18.0	21.6	25.2 2 35 2 42 2 56 3 70 4 84 5 105 6	28.8
1	100HHN = 0505	3.7	5.0	5	65	10.0	ırs	72	67	63	58	52	44	35	23
2	100HHN = 0606	4.5	6.0	6	65	12.0		86	80	76	70	62	53	42	28
3	100HHN = 0808	5.5	7.5	8	65	14.5		115	107	101	93	83	70	56	37
4	100HHN = 1010	7.5	10.0	10	65	19.5	Meters	144	134	126	116	104	88	70	46
5	100HHN - 1312	9.3	12.5	12	65	25.0	<u> </u>	172	161	151	139	125	106	84	55
6	100HHN - 1515	11.0	15.0	15	65	29.0		215	201	189	174	156	132	105	69
7	100HHN - 1818	13.0	17.5	18	65	34.0	Head	258	241	227	209	187	158	126	83
8	100HHN - 2020	15.0	20.0	20	65	39.0		287	268	252	232	208	176	140	92
9	100HHN - 2525	18.3	25.0	25	65	48.0		359	335	315	290	260	220	175	115

	PERFORMANCE CHART FOR 15 CM BOREWELL SUBMERSIBLE PUMPSETS - 125HHN SERIES AT RATED VOLTAGE OF 415 VOLTS - THREE PHASE, 50 Hz FREQUENCY, AC SUPPLY														
S. No.	Pump	Power Rating		No of Stages	Outlet Size	Rated Current (Ampere)	LPM	0	100	220	280	350	410	470	530
	Model	kW	HP	Stages	(mm)	3Ø	m³/h	0.0	6.0	13,2	16.8	21.0	24.6	28.2	31.8
1	125HHN - 0403	3.0	4.0	3	65	8.5	ırs	45	44	41	38	34	29	23	16
2	125HHN - 0504	3.7	5.0	4	65	10.0		60	59	55	51	45	39	31	21
3	125HHN - 0605	4.5	6.0	5	65	12.0		75	73	68	63	57	48	38	27
4	125HHN = 0806	5.5	7.5	6	65	14.5	Meters	90	88	82	76	68	58	46	32
5	125HHN - 1008	7.5	10.0	8	65	19.5	<u>.</u>	120	117	109	101	91	77	61	43
6	125HHN - 1310	9.3	12.5	10	65	25.0		150	147	137	127	113	97	77	53
7	125HHN - 1512	11.0	15.0	12	65	29.0	Head	180	176	164	152	136	116	92	64
8	125HHN - 1814	13.0	17.5	14	65	34.0		210	205	191	177	159	135	107	75
9	125HHN - 2016	15.0	20.0	16	65	39.0		240	235	219	203	181	155	123	85

	PERFORMANCE CHART FOR 15 CM BOREWELL SUBMERSIBLE PUMPSETS - 50HHF SERIES AT RATED VOLTAGE OF 415 VOLTS - THREE PHASE, 50 Hz FREQUENCY, AC SUPPLY														
S. No.	Pump Model	Power	Rating	No of Stages	Outlet Size	Rated Current (Ampere)	LPM	0	90	105	120	135	150	165	195
	Model	kW	HP	Stages	(mm)	3Ø	m³/h	0.0	5.4	6.3	7.2	8.1	9.0	9.9	11.7
1	50HHF - 0306	2,2	3.0	6	50	6.5	ers	88	79	77	72	66	60	53	32
2	50HHF = 0408	3.0	4.0	8	50	8.5		117	106	102	96	88	80	70	43
3	50HHF = 0510	3.7	5.0	10	50	10.0	Meters	146	132	128	120	110	100	88	54
4	50HHF - 0612	4.5	6.0	12	50	12.0	<u></u>	175	158	154	144	132	120	106	65
5	50HHF - 0815	5.5	7.5	15	50	14.5	ag	219	198	192	180	165	150	132	81
6	50HHF - 1020	7.5	10.0	20	50	19.5	Head	292	264	256	240	220	200	176	108
7	50HHF - 1325	9.3	12.5	25	50	25.0		365	330	320	300	275	250	220	135

	PEI					M BOREWELI OLTS - THREE							ES		
S. No.	Pump	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	100	120	140	160	180	200	220
	Model	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	6.0	7.2	8.4	9.6	10.8	12.0	13.2
1	60HHF - 0304	2.2	3.0	4	50	6.5		64	59	56	53	48	42	34	24
2	60HHF - 0305	2.2	3.0	5	50	6.5		79	74	70	66	61	53	42	29
3	60HHF - 0407	3.0	4.0	7	50	8.5		111	103	98	92	85	74	59	41
4	60HHF - 0508	3.7	5.0	8	50	10.0		127	118	112	105	97	84	67	47
5	60HHF - 0610	DHHF - 0508 3.7 5.0 8 50					ဖွ	159	147	139	132	121	105	84	59
6	60HHF - 0812	5.5	7.5	12	50	14.5	ete	191	177	167	158	145	126	101	71
7	60HHF - 1013	7.5	10.0	13	50	19.5	Σ	207	192	181	171	157	137	109	77
8	60HHF - 1016	7.5	10.0	16	50	19.5	=	254	236	223	211	194	168	135	94
9	60HHF - 1319	9.3	12.5	19	25.0	ead	302	280	265	250	230	200	160	112	
10	60HHF - 1524	11.0	15.0	24	50	29.0	Ť	381	354	335	316	291	253	202	141
11	60HHF - 1829	13.0	17.5	29	50	34.0		461	427	404	382	351	305	244	171

	PE					M BOREWELL OLTS - THREE							ES		
S. No.	Pump	Power	Rating	No of	Outlet Size	Rated Current	LPM	0	80	120	160	200	240	260	280
	Model	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	4.8	7.2	9.6	12.0	14.4	15.6	16.8
- 1	80HHF - 0304	2.2	3.0	4	50	6.5		66	62	60	56	46	36	30	23
2	80HHF - 0405	3.0	4.0	5	50	8.5		82	78	75	70	58	46	38	29
3	80HHF - 0506	3.7	5.0	6	50	10.0	ဖွ	98	94	89	83	69	55	45	35
4	80HHF - 0607				12.0	ter	115	109	104	97	81	64	53	41	
5	80HHF - 0810	5.5	7.5	10	50	14.5	Σ e	164	156	149	139	115	91	75	58
6	80HHF - 1012	7.5	10.0	12	50	19.5	.5	197	187	179	167	138	109	90	70
7	80HHF - 1315	9.3	12.5	15	50	25.0	ad	246	234	224	209	173	137	113	87
8	80HHF - 1518	11.0	15.0	18	29.0	Ŧ	295	281	268	250	207	164	135	104	
9	80HHF - 1821	13.0	17.5	21	50	34.0		344	328	313	292	242	191	157.5	122
10	80HHF - 2024	15.0	20.0	24	50	39.0		394	374	358	334	276	218	180	139


S. No.	Pump Model	Power	Rating	No of Stages	Outlet Size	Rated Current	LPM	0	100	150	200	250	300	350	425
	Wodel	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	6.0	9.0	12.0	15.0	18.0	21.0	25.5
1	100HHF - 0303	2.2	3.0	3	50	6.5		50	48	45	43	38	31	20	8
2	100HHF - 0404	3.0	4.0	4	50	8.5		66	63	60	57	51	42	27	- 11
3	100HHF - 0505	3.7	5.0	5	50	10.0	υ	83	79	75	71	63	52	33	13
4	100HHF - 0606	4.5	6.0	6	50	12.0	te	100	95	90	85	76	63	40	16
5	100HHF - 0808	5.5	7.5	8	50	14.5	Me	133	127	120	113	101	83	53	21
6	100HHF - 1010	7,5	10.0	10	50	19.5	.5	166	158	150	142	127	104	67	27
7	100HHF - 1312	9.3	12.5	12	50	25.0	ad	199	190	180	170	152	125	80	32
8	100HHF - 1515	11.0	15.0	15	50	29.0	£	249	238	225	213	190	156	100	40
9	100HHF - 1818	13.0	17.5	18	50	34.0		299	285	270	255	228	188	120	48
10	100HHF - 2020	15.0	20.0	20	50	39.0		332	317	300	283	253	208	133	53

	PEF					M BOREWELL OLTS - THREE							IES		
S. No.	Pump	Power	Rating	No of Stages	Outlet Size	Rated Current	LPM	0	80	160	240	320	400	480	520
	Model	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	4.8	9.6	14.4	19.2	24.0	28.8	31,2
1	125HHF - 0403	3.0	4.0	3	65	8.5		48	48	47	42	34	24	12	4
2	125HHF - 0504	3.7	5.0	4	65	10.0		64	64	62	55	45	32	16	5
3	125HHF - 0605	4.5	6.0	5	65	12.0	ပ္	81	80	78	69	57	40	20	6
4	125HHF - 0806	5.5	7.5	6	65	14.5	Meters	97	96	93	83	68	48	24	8
5	125HHF - 1008	7.5	10.0	8	65	19.5	<u>.</u>	129	127	124	111	91	64	31	10
6	125HHF • 1310	9.3	12.5	10	65	25.0	Head	161	159	155	138	113	80	39	13
7	125HHF - 1512	11.0	15.0	12	65	29.0	_ ≝	193	191	186	166	136	96	47	15
8	125HHF - 1814	13.0	17.5	14	65	34.0		225	223	217	194	159	112	55	18
9	125HHF - 2016	15.0	20.0	16	65	39.0		258	255	248	221	181	128	63	20

	PEF					M BOREWELL OLTS - THREE							ES		
S. No.	Pump Model	Power	Rating	No of Stages	Outlet Size	Rated Current	LPM	0	180	240	300	360	420	480	540
	Wodel	kW	HP	Otages	(mm)	(Ampere)	m³/h	0.0	10.8	14.4	18.0	21.6	25.2	28.8	32.4
1	150HHF - 0503	3.7	5.0	3	65	10.0		48	45	43	41	37	30	21	9
2	150HHF - 0604	4.5	6.0	4	65	12.0		64	60	58	55	50	40	29	13
3	150HHF - 0805	5.5	7.5	5	65	14.5	22	80	75	72	68	62	49	36	16
4	150HHF - 1007	7.5	10.0	7	65	19.5	Meters	112	105	101	95	87	69	50	22
5	150HHF - 1308	9.3	12.5	8	65	25.0	ء ا	128	120	115	109	99	79	57	25
6	150HHF - 1510	11.0	15.0	10	65	29.0	교	160	150	144	136	124	99	71	31
7	150HHF - 1812	13.0	17.5	12	65	34.0	Head	192	180	173	164	149	119	86	38
8	150HHF - 2013	15.0	20.0	13	65	39.0		208	195	187	177	161	128	93	41

	PEF					M BOREWELL OLTS - THREE							ES		
S. No.	Pump Model	Power	Rating	No of Stages	Outlet Size	Rated Current	LPM	0	100	200	300	400	500	600	650
	Wodel	kW	HP	Stages	(mm)	(Ampere)	m³/h	0.0	6.0	12.0	18.0	24.0	30.0	36.0	39.0
1	200HHF - 0402	3.0	4.0	2	65	8.5		30	30	30	28	24	18	8	3
2	200HHF - 0603	12.0		45	45	45	43	37	27	12	4				
3	200HHF - 0804	5.5	7.5	3 65 4 65		14.5	Meters	60	60	60	57	49	36	16	6
4	200HHF - 1005	7.5	10.0	5	65	19,5		76	75	75	71	61	46	21	7
5	200HHF - 1306	9.3	12.5	6	65	25.0	.E	91	90	89	85	73	55	25	8
6	200HHF - 1508	11.0	15.0	8	65	29.0	Head	121	120	119	114	98	73	33	11
7	200HHF - 2010	15.0	20.0	10	65	39.0	_	151	150	149	142	122	91	41	14

SUBMERSIBLE PRODUCT RANGE

OPENWELL SUBMERSIBLE PUMPSET

JOS

HORIZONTAL OPENWELL PUMPS

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variations which reduces the chances of motor burning at low voltage.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Advanced Water Cooled Motors Designs

The motor is filled with potable water, protects from overheating and facilitates smoother and trouble free operation for the years.

Wide Voltage Motor Designs

Motors are designed with extra overload capacities, more water spaces and engineered with high grade materials to performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians

High Head Applications

The pump has been designed to deliver large volumes of water for high head applications, helping customers to achieve high turnaround time and productivity.

TECHNICAL SPECIFICATION

Head Range - Up to 64 Metres

Discharge Range - Up to 48.5 LPS
Power Rating - 2.2 to 15 kW (3 to 20 HP)

Voltage Range* - 200 to 440 Volts (Three Phase)

Insulation - PP Protection - IP68

*Under ideal condition with suitable cable size.

MATERIAL OF CONSTRUCTION

 Impeller
 Cast Iron

 Delivery Casing
 Cast Iron

 Motor Body
 Cast Iron

 Pump Shaft
 Stainless Steel

- · Irrigation in horticulture & agriculture
- Sprinkler and drip irrigation
- Water supplies for high rise building
- Rural water supply
- · Domestic and community water supply

			ı	PERFORMA		RT FOR JOS Hz FREQUE								ED VOL	TAGE,							
			D. Maria	D: 01		Rated							TOTA	L HEAD	IN MI	ETRES						
S. No.	PUMP MODEL	Power	Rating	Pipe Si	ze (mm)	Voltage	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
		kW	HP	SUC.	DEL.	(Volts)						DISC	HARGE	IN LIT	RES P	ER SE	COND					
1	JOS - 326	2.2	3	65	65	380	•	13.2	12.4	11.6	10.4	8.8	7.2	4.4	-	-	-	-	-	-	-	-
2	JOS - 330	2.2	3 50 40 380 5.8 5.4 4.8 4.2 3.2 2.2 -															-				
3	JOS - 335	2.2																-				
4	JOS - 531	3.7	3.7 5 65 65 380 14.8 14.4 13.9 13.4 12.4 11.5 9.2 6.0															1				
5	JOS - 540	3.7	5	65	50	380	-	-	-		-	-		11.3	10.8	10.2	9.2	8.4	6.8	5.2	3.2	-
6	JOS - 835	5.5	7.5	80	65	380	•	-	-		20.2	19.9	19.2	18.5	17.2	15.8	14.0	12.2	9.5	•	-	-
							20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50
7	JOS - 550	3.7	5	50	40	380	-	-	-		-	5.5	5.4	5.2	5.1	4.8	4.6	4.2	3.8	3.4	2.8	2.2
8	JOS - 846	5.5	7.5	65	50	380	15.7	15.2	14.6	14.0	13.4	12.7	11.8	11.0	10.1	9.2	7.8	6.0	4.0		-	-
9	JOS = 854	5.5	7.5	65	50	380	-	-	-	-	-	-	13.0	12.3	11.6	10.9	10.0	9.0	8.0	6.5	4.0	-
10	JOS - 1040	7.5	10	80	65	380	20.0	19.3	18.5	17.7	16.8	15.9	14.5	13.3	12.0	10.5	-		-	-	-	-
- 11	JOS - 1050	7.5	10	65	65	380	-	-	-		-	-	•	11.6	11.2	10.6	10.2	9.5	8.8	8.0	7.0	6.0
12	JOS - 2040	15	20	100	100	380	48.5	46.5	44.5	42.0	39.8	37.0	34.0	30.5	26.0	21.0	12.0	-		•	-	-
							28	30	32	34	36	38	40	42	44	46	48	50	52	56	60	64
13	JOS - 1065	7.5	10	65	50	380	-	-	-	-	-	-	-	-	7.4	7.2	7.0	6.6	6.2	5.6	4.7	3.6

VERTICAL OPENWELL PUMPS

FEATURES

Wide Voltage Design

The motor is designed to withstand wide voltage variations which reduces the chances of motor burning at low voltage.

Design to Prevent Overloading

Lesser chances of motor burning even if the pump operates at lower head than recommended as motor does not get overload thus ensures substantial saving from maintenance cost and breakdown.

High Efficiency and Energy Saving Design

Innovative design manufactured at state of art plant, delivers optimum efficiency at lower energy consumption resulting in significant cost savings.

Dynamically Balanced Rotating Parts

Minimum vibration protects components from damage during the operation, thus ensures consistent performance over longer time period as concentricity is maintained.

Advanced Water Cooled Motors Designs

The motor is filled with potable water, protects from overheating and facilitates smoother and trouble free operation for the years.

Wide Voltage Motor Designs

Motors are designed with extra overload capacities, more water spaces and engineered with high grade materials to performs well in low voltage with minimum discharge drops and suitable for wide voltage applications.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians

High Head Applications

The pump has been designed to deliver large volumes of water for high head applications, helping customers to achieve high turnaround time and productivity.

TECHNICAL SPECIFICATION

Head - Up to 147 Metres
Capacity - Up to 840 LPM

Power Rating - 2.2 to 15 kW / 3 to 20 HP

Voltage Range - 200 to 440 Volts (Three Phase)*

Insulation - PP
Protection - IP68

*Under ideal condition with suitable cable size.

MATERIAL OF CONSTRUCTION

 JVS
 JVSN

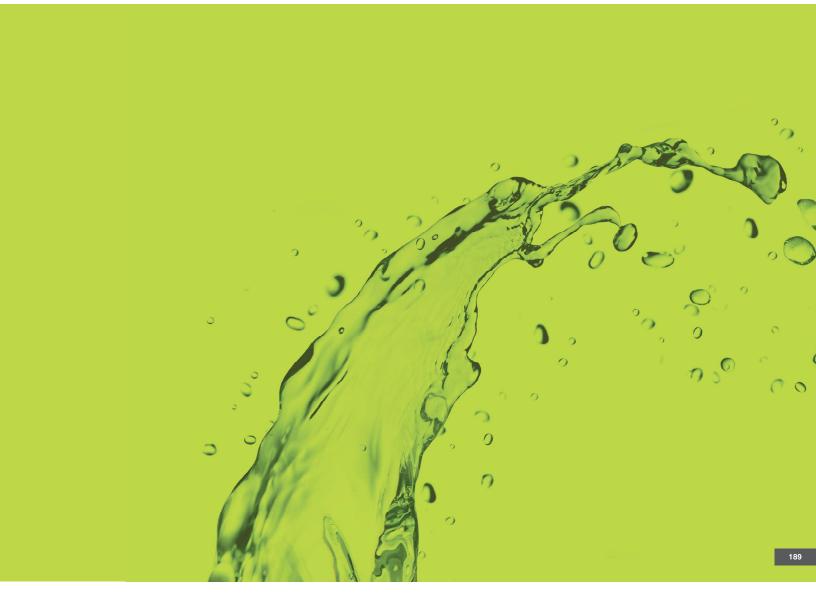
 Impeller
 Stainless Steel
 Cast Iron

 Outlet (NRV Body)
 Cast Iron
 Cast Iron

 Motor Body
 Mild Steel
 Cast Iron

 Pump Shaft
 Stainless Steel
 Stainless Steel

- Irrigation in horticulture & agriculture
- · Sprinkler and drip irrigation
- Water supplies for high rise buildings
- · Rural water supply
- Domestic and community water supply



	PERFOR					ES, 2 POLE, OLTS, 50 Hz							JMPS,	
Sr.	PUMP		TOR ING	NO. OF	OUTLET S i ZE	FULL LOAD	LPM	120	240	360	480	600	720	840
No.	MODEL	kW	НР	STAGES	(mm)	CURRENT (Amps)	m³/hr	7	14	22	29	36	43	50
1	JVSA 0502	3.7	5	2	80	10		37	35	34	31	25	16	7
2	JVSA 0803	5.5	7.5	3	80	14.5		55	53	51	46	37	24	10
3	JVSA 1004	7.5	10	4	80	19.5	HEAD IN	73	71	68	61	49	32	13
4	JVSA 1305	9.3	12.5	5	80	25	METERS	92	88	85	77	62	40	17
5	JVSA 1506	11	15	6	80	29		110	106	102	92	74	48	20
6	JVSA 2008	15	20	8	80	39		147	141	136	123	99	64	27
							LPM	120	180	240	300	360	420	480
							m³/hr	7	11	14	18	22	25	29
7	JVSC 0302	2. 2	3	2	80	6.5		35	34	32	29	25	20	14
8	JVSC 0503	3.7	5	3	80	10		53	51	48	44	38	30	21
9	JVSC 0805	5.5	7.5	5	80	14.5		88	85	80	73	63	50	35
10	JVSB 1007	7.5	10	7	80	19.5		119	115	109	98	84	65	42
							LPM	120	240	360	420	480	600	720
							m³/hr	7	14	22	25	29	36	43
11	JVSD 0804	5.5	7.5	4	80	14.5		77	73	65	60	54	39	20
12	JVSD 1005	7.5	10	5	80	19.5	HEAD IN	96	91	81	75	68	49	25
13	JVSD 1306	9.3	12.5	6	80	25	METERS	116	109	98	90	81	59	30
14	JVSD 1507	11	15	7	80	29		135	127	114	105	95	68	35
Sr.	PUMP		TOR	NO. OF	OUTLET IN	FULL LOAD	m³/hr HEAD IN	180	300	420	540	660	780	840
No.	MODEL	kW	НР	STAGES	mm	CURRENT (Amps)		11	18	25	32	40	47	50
1	JVSA = 0502N	3.7	5	2	65	10		45	43	40.5	36	30	23	18.5
2	JVSA = 0803N	5.5	7.5	3	65	14.5	METERS	65.5	61.5	57	51.25	41.5	31	24.5

- Note:

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

 Vertical Openwell Submersible(JVS) Pump at 50 Hz frequency and 415 rated Voltage.

END-SUCTION PUMPS

NW/NWD

END-SUCTION PUMPS

FEATURES

Flatter Efficiency Curve

Minimum variations in efficiency during the entire operating range increases the Head utility of pump set for variable conditions.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

Design to Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a heat lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which provide ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

Highly Efficient and Flexible Design

Designed to run directly through pulley with engine / motor.

TECHNICAL SPECIFICATION

Engine Coupled Up to 44 Metres

Discharge Range Power Rating

Up to 96.5 LPS 3.7 to 18.7 kW

(5 to 25 HP)

Motor Coupled

Up to 32 Meters Up to 87 LPS 2.2 to 11 kW (3 to 15 HP)

MATERIAL OF CONSTRUCTION

Delivery casing Pump shaft

Cast Iron Cast Iron Carbon Steel

- Irrigation in (horticulture & agriculture)
- Rural water supply
- Mounting on water tanker

			F	PERF	ORM.	ANCE C	HART FO	R NW	/ / NV	V +/	NWD	ENG	INE	cou	PLEC	ENI	SU	стіо	N PU	MPS	AT F	RATE	D SP	EED						
		Pov	ver	Pipe	Size	Rated	Impeller										TOT	TAL HE	AD IN	METI	RES									
Sr. No.	Pump Model	Rat		-	ım)	Speed (RPM)	Diameter	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
		kW	HP	SUC.	DEL		(mm)									DIS	CHAR	GE IN	LITRE											
1	NW1+ / NW1D	4.3	5.7	65	50	1800	207	-	-	-	-	-	-	-	-	-	-	-	-	16.7	16.0	15.0	13.7	12.4	-	-	-	-	-	-
2	NW1+ / NW1D	6	8	65	50	1800	223	-	-	-	-	-	-	-	-	-	-	-	-	-	19.8	18.5	18.0	17.3	16.4	15.2	14.1	12.6	-	-
3	NW2+ / NW2D	3.7	5	80	65	1500	223	-	-	-	-	-	-	-	22.0	20.8	19.3	17.9	16.0	14.0	-	-	-	-		•	-	-	-	-
4	NW2M+ / NW2DM+	3.7	5	80	80	1500	223	-	-	-	- 1	-	-	- 1	22.0	20.8	19.3	17.9	16.0	14.0	-	-	-	-		- 1	-	-	-	-
5	NW2+ / NW2D	5.2	7	80	65	1800	203	-	-	-	-	-	-	-	-	-	24.0	23.1	21.8	20.6	19.5	18.0	16.0	14.0	-	-	-	-	-	-
6	NW2M+ / NW2DM+	5.2	7	80	80	1800	203	-	-	-	-	-	-	-	-	-	24.0	22.8	21.8	20.7	19.5	18.0	16.0	14.0	-	-	-	-	-	-
7	NW2+ / NW2D	6	8	80	65	1800	212	-	-	-	-	-	-	-	-	-	-	-	24.7	23.5	22.3	21.0	19.5	18.0	16.3	-	-	-	-	-
8	NW2M+ / NW2DM+	6	8	80	80	1800	212	-	-	-	- 1	-	-	-	-	-	-	- 1	24.7	23.5	22.3	21.0	19.5	18.0	16.3	-	-	-	-	
9	NW2+ / NW2D	6.5	8.7	80	65	2000	196	-	-	-	-	-	-	-	-	-	-	-	-	25.0	24.0	22.7	21.4	20.0	18.7	17.1	-	-	•	•
10	NW2M+ / NW2DM+	6.5	8.7	80	80	2000	196	-		-	- 1	-	- 1	- 1		-	- 1	- 1	-	25.0	24.0	22.7	21.4	20.0	18.7	17.1	- 1		-	- 1
11	NW3+ / NW3+D	3.7	5	65	50	1500	239	-	-	-	-	-	-	-	-	-	-	-	14.3	13.5	12.7	11.7	10.7	9.5	•	•	-	-	-	-
12	NW4+ / NW4D	3.7	5	100	100	1500	197	-	34.0	32.5	30.7	29.0	26.5	23.7	20.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13	NW4+ / NW4D	4.3	5.7	100	100	1800	167	-	35.0	33.5	32.0	30.0	28.0	25.0	21.9	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-
14	NW4+ / NW4D	4.5	6	100	100	1500	201	-	35.5	34.4	33.0	31.0	29.0	26.2	22.7	17.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	NW4+ / NW4D	5.2	7	100	100	1500	206	-	-	36.0	34.5	33.0	31.1	29.0	26.7	23.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16	NW4+ / NW4D	5.2	7	100	100	1800	184	-	-	-	37.5	36.0	34.3	32.6	30.8	28.6	26.0	23.0	-	-	-	-	-	-			-	-	-	-
17	NW4+ / NW4D	6	8	100	100	1800	188	-	-	-	37.0	36.0	34.7	33.4	31.6	29.7	27.4	24.5	20.0	-	-	-	-	-	-	-	-	-	-	-
18	NW4+ / NW4D	6.5	8.7	100	100	2000	173	-	-	-	-	38.0	36.5	35.8	34.5	33.0	31.0	28.0	25.0	-	-	-	-	-	-	-	-	-	-	-
19	NW7+ / NW7+D	4.5	6	100	80	1500	218	-	-	-	-	-	-	24.6	23.3	21.8	20.0	18.0	15.3	-	-	-	-	-	-	-	-	-	-	-
20	NW7+ / NW7+D	5.2	7	100	80	1500	230	-	-	-	-	-	-		26.5	25.0	23.7	22.0	20.2	18.0	15.3	-	-	-		-	-	-	-	-
21	NW7 / NW7D	6.5	8.7	100	80	1500	255	-	-	-	-	-	-	30.6	29.9	29.0	28.0	27.0	26.0	24.6	23.4	22.0	20.8	19.2	17.9	15.0	-	-	-	-
22	NW7+ / NW7+D	7.5	10	100	80	1500	255	-	-	-	-	-	-	-	-	-	-	29.0	27.7	26.5	25.2	23.6	22.0	20.0	17.8	-	-	-	-	-
23	NW7+ / NW7+D	8.6	11.5	100	80	1800	226	-	-	-	-	-	-	-	-	-	-	-	-	31.0	30.0	28.6	27.2	26.0	24.5	23.0	21.0	18.7	-	-
24	NW8+ / NW8+D	7.5	10	100	100	1500	245	-	-	-	40.0	39.0	38.2	37.0	36.0	34.8	33.5	32.0	30.2	28.0	26.0	23.0	-	-			-	-	-	
25	NW9D	4.5	6	125	125	1500	177	58.7	53.2	48.0	42.0	33.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
26	NW9D	5.2	7	125	125	1500	183	-	57.6	52.5	47.0	41.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27	NW9D	7.5	10	125	125	1500	198	-	66.0	61.5	57.0	51.3	45.0	37.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	NW9D	8.6	11.5	125	125	1800	175	-	-	-	65.0	61.2	56.7	51.7	45.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
29	NW9D	9	12	125	125	1500	205	-	-	65.5	61.5	57.3	52.7	48.0	40.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30	NW9D	10.4	14	125	125	1800	186	-	-	-	72.0	68.7	65.0	61.1	56.4	51.7	46.2	-	-	-	-	-	-	-	-	-	-	-	-	-
31	NW9D	11.9	16	125	125	1800	195	-	-	-	-	-	72.0	68.0	64.5	60.5	56.2	50.7	43.2	-	-	-	-	-	-	-	-	-	-	-
32	NW9D	13	17.4	125	125	2000	182	-	-	-	-	-	77.0	73.6	70.4	66.7	63.0	58.7	54.0	46.5	-	-	-	-	-	-	-	-	-	-
33	NW10D	14.2	19	125	125	1500	260	-	-	-	-	-	-	-	-	-	-	54.5	53.3	52.0	50.2	48.3	46.5	44.0	-	-	-	-	-	-
34	NW10D	17.2	23	125	125	1800	234	-	-	-	-	-	-	-	-	-	-	-	-	-	58.4	57.0	55.5	54.0	52.5	49.7	48.8			
35	NW12D	14.2	19	150	150	1500	242	-	-	89.0	87.0	85.0	82.5	80.0	77.0	74.0	70.4	66.7	62.0	55.0	-	-	-	-	-	-	-	-	-	-
36	NW12D	17.2	23	150	150	1800	212	-	-	95.0	92.7	91.0	89.0	86.4	84.0	81.7	78.5	75.5	71.8	66.0	62.3	56.0	-	-	-	-	-	-	-	-
37	NW12D	18.7	25	150	150	2000	197	-	-	-	96.5	94.5	92.7	90.7	88.5	86.6	84.5	82.2	80.0	76.5	72.2	-	-	-	-		-	-	-	-

Note:

- NW-9D (pipe size : 150 x 150 mm) can be supplied with 125 to 150 mm extension flanges for both suction and delivery sizes against requirement, direction of rotation for all pump models is clockwise except for NW8D, NW10D, NW11D, and Nw12D it is anticlockwise when viewed from suction side.
 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

				ı	PERF	ORMANO	E CHART I	FOR I	۱ / W	√W+	/ NWI	D ENG	SINE	COUF	LED	END :	SUCT	ION F	UMP	S AT	RATE	D SPI	EED							
		Po			Size	Rated	Impeller										то	TAL H	EAD IN	METE	ERS									
Sr.	Pump Model	Rat	ing	(m	m)	Speed	Diameter	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
110		kW	HP	suc.	DEL	(RPM)	(mm)									DIS	CHAR	GE IN	LITRE	S PER	SECO	DND								
38	NW6 / NW6D	7.5	10	80	80	1500	295	-	-	-	-	-	-	-	-	-	-	-	-	-	17.0	15.6	13.6	10.6	-	-	-	-	-	-
39	NW7+ / NW7+D	10.4	14	100	80	1800	240	-	-	-	-	-	-	33.0	32.0	31.0	30.0	29.0	27.5	26.0	24.2	22.5	20.1	-	-	-	-	-	-	-
40	NW7+ / NW7+D	11.9	16	100	80	1800	250	-	-	-	-	-	-	-	34.5	34.0	33.0	32.0	31.0	29.9	28.5	27.1	26.6	23.7	21.5	-	-	-	-	-
41	NW7+ / NW7+D	13	17.4	100	80	2000	236	-	-	-	-	-	-	-	-	-	36.5	35.8	34.8	33.8	32.8	31.5	30.3	29.0	27.8	26.2	24.5	22.5	20.5	-
42	NW8+ / NW8+D	17.2	23	100	100	1800	258	-	-	-	-	-	-	-	-	-	45.0	44.0	43.0	41.9	40.2	38.8	37.0	35.0	33.3	31.2	-	-	-	-
43	NW8+ / NW8+D	18.7	25	150	150	2000	197	-	57.5	56.0	54.8	53.6	52.5	51.3	50.1	49.0	48.0	47.0	45.7	44.5	43.0	42.0	40.7	39.2	38.0	36.0	34.2	32.0	30.0	-
44	NW10D	18.7	25	125	125	2000	220	-	-	-	-	-	-	61.5	60.3	58.8	57.5	56.2	55.0	53.5	51.2	-	-	-	-	-	-	-	-	-
								20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
45	NW6 / NW6D	10.4	14	80	80	1800	274	-	-	-	-	-	-	-	-	-	-	-	-	-	17.0	15.5	13.7	11.5	8.2	-	-	-	-	-
46	NW6 / NW6D	11.9	16	80	80	1800	288	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	18.9	17.5	16.0	14.0	11.5	7.5	-
47	NW6 / NW6D	13	17.4	80	80	2000	265	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20.0	19.0	17.6	15.7	13.3	10.3
48	NW 11D	7.75	10.5	100	80	1450	349	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29.0	26.0	24.7	22.2	19.2
								22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
49	NW 14D	15.6	21.2	80	65	1800	293	11.0	10.8	10.7	10.6	10.5	10.3	10.2	10.0	9.8	9.5	9.3	9.0	8.8	8.4	8.2	7.8	7.4	7.0	6.5	5.8	5.2	4.2	2.8

	PERF	ORM	ANCI	E CHA	ART F	OR NW /	NW+/NW	D EN	ERGY	EFF	CIEN	T IE2	мот	OR C	OUPL	ED PI	JMPS	AT F	RATE	D SPE	ED			
		Po	wer	Pipe	Size	Rated	Impeller							TO	TAL HE	AD IN	MET	RES						
Sr. No.	Pump Model	Rat	ting	,	m)	Speed	Diameter	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
140.		kW	HP	SUC.	DEL	(RPM)	(mm)						DIS			LITRE		SECO	DND					
1	NW1++	2.2	3	65	50	1400	223	-	-	-	-	-	-	14.0	12.9	11.6	9.8	-	-	-	-	-	-	-
2	NW1+/NW1D	2.2	3	65	50	1400	223	-	-	-	-	-	-	14.0	12.9	11.6	9.8	-	-	-	-	-	-	-
3	NW2+/NW2D	3.7	5	80	65	1420	230	-	-	-	-	-	-	23.7	22.4	21.0	19.3	17.2	14.4	-	-	-	-	-
4	NW2M+/NW2DM+	3.7	5	80	80	1420	230	-	-	-	-	-	-	23.7	22.4	21.0	19.3	17.2	14.4	-	-	-	-	-
5	NW3+/NW3+D	3.7	5	65	50	1400	256	-	-	-	-	-	-	-	-	-	-	14.5	13.7	12.9	12.0	11.0	10.0	
6	NW4+/NW4D	3.7	5	100	100	1420	206	34.0	32.7	31.2	29.5	27.4	25.0	21.0	-	-	-	-	-	-	-	-	-	-
7	NW7/NW7D	5.5	7.5	100	80	1450	255	-	-	-	-	29.6	28.8	27.9	27.0	26.0	24.8	23.8	22.8	21.0	19.6	18.0	16.0	12.4
8	NW7+/NW7+D	5.5	7.5	100	80	1420	255	-	-	-	-	-	-	-	28.0	26.7	25.5	24.0	22.5	20.6	18.5	16.0	-	-
9	NW8/NW8D	5.5	7.5	100	100	1450	238	-	-	37.0	35.9	34.8	33.5	32.2	31.0	29.2	27.0	25.0	22.6	19.4	-	-	-	-
10	NW8+/NW8+D	5.5	7.5	100	100	1450	238	-	-	35.0	34.0	33.0	31.8	30.4	29.7	26.8	24.2	21.0	-	-	-	-	-	-
11	NW8/NW8D	7.5	10	100	100	1450	258	-	-	-	-	-	40.0	39.0	37.8	36.2	35.0	34.0	32.6	31.0	29.0	26.4	24.0	20.4
12	NW8+/NW8+D	7.5	10	100	100	1450	258	-	-	-	-	-	-	-	-	36.0	34.5	33.0	31.0	29.0	27.0	24.0	-	-
13	NW9D	5.5	7.5	125	125	1450	197	62.0	57.4	52.2	47.0	40.2	-	-	-	-	-	-	-	-	-	-	•	-
14	NW9D	7.5	10	125	125	1450	210	73.0	70.0	65.7	62.0	57.5	52.0	45.0	36.0	-	-	-	-	-	-	-	-	-
15	NW10D	5.5	7.5	125	125	1450	206	-	-	42.5	41.5	39.8	37.2	34.5	-	-	-	-	-	-	-	-	-	-
16	NW10D	7.5	10	125	125	1450	228	-	-	-	-	47.5	46.0	44.0	42.0	40.0	37.5	-	-	-	-	-	-	-
17	NW10D	9.3	12.5	125	125	1450	245	-	-	-	-	-	-	50.5	49.0	47.0	45.0	43.0	41.0	-	-	-	-	-
18	NW10D	11	15	125	125	1450	260	-	-	-	-	-	-	-	54.0	52.9	51.3	50.0	48.0	46.2	44.0	42.0	-	-
19	NW12D	11	15	150	150	1450	242	87.0	85.5	83.7	81.0	78.5	76.0	73.0	69.0	65.5	61.0	54.0	-	-	-	-	-	-

	PERF	ORM	ANCI	E CHA	RT F	OR NW /	NW+ / NW	D ENI	ERGY	EFF	CIEN	T IE2	мото	OR CO	DUPL	ED PI	JMPS	AT F	RATE) SPE	ED			
		Po	wer	Pipe	Size	Rated	Impeller							TO	TAL HE	AD IN	METE	RS						
Sr.	Pump Model	Rat	ing	(m	ım)	Speed	Diameter	10	-11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
140.		kW	HP	SUC.	DEL	(RPM)	(mm)																	
20	NW8/NW8D	9.3	12.5	100	100	1450	274		-	-	-	41.0	40.0	39.0	37.8	36.4	35.0	34.0	32.0	30.6	28.6	26.0	23.0	20.0
								16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
21	NW6/NW6D	5.5	7.5	80	80	1450	288	-	-	-	-	-	-	17.0	16.1	14.8	13.0	10.4	6.0	-	-	-	-	-
22	NW6DM	7.5	10	80	80	1450	305	-	-	-	-	-	-	-	-	-	-	-	-	21.0	19.3	17.3	15.0	12.0
23	NW8/NW8D	11	15	100	100	1450	289	43.2	42.0	41.2	40.6	39.2	28.6	37.2	36.0	34.6	32.8	31.4	29.0	26.8	23.0	20.0	-	-

- Note:

 NW-9D (pipe size: 150 x 150 mm) can be supplied with 125 to 150 mm extension flanges for both suction and delivery sizes against requirement, direction of rotation for all pump models is clockwise except for NW8D, NW10D, NW11D, and Nw12D it is anticlockwise when viewed from suction side.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

KE

END-SUCTION PUMPS

FEATURES

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pump set for variable conditions.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

Design To Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a heat lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which provides ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

Highly Efficient & Flexible Design

Designed to run directly through pulley with engine / motor.

TECHNICAL SPECIFICATION

Head - Up to 23 Metres Discharge Range - Up to 37 LPS

Power Rating - 3.7 to 5.9 kW (5 to 8 HP)

MATERIAL OF CONSTRUCTION

Impeller - Cast Iron
Delivery casing - Cast Iron
Pump shaft - Carbon Steel

- Irrigation in (horticulture & agriculture)
- Rural water supply
- Mounting on water tanker

	PERFORMANCE CHART FOR 'KE' SERIES, COUPLED END SUCTION PUMPS AT RATED SPEED																				
	Pump Model		Power Rating		Pipe Size (mm)		Rated Speed (RPM)	Impeller Diameter	r TOTAL HEAD IN METRES												
Sr. No.		Type							12	13	14	15	16	17	18	19	20	21	22	23	
140.			kW	(mm)				DISCH	IARGE	IN LIT	RES P	ER SE	COND								
1	65 KE-250+	AV-1	3.7	5	80	65	1500	223	22.0	20.7	19.5	17.8	16.0	14.0	10.8	-	-	-	-	-	
2	65 KE-250+	TV-1	5.9	8	80	65	1800	221	-	-	-	24.8	23.8	22.8	21.8	20.4	19.0	17.4	15.5	12.4	
									6	7	8	9	10	11	12	13	14	15	16	17	
3	100 KE=215+	AV-1	3.7	5	100	100	1500	197	34.0	32.5	30.8	28.9	26.8	24.2	19.6	-	-	-	-	-	
4	100 KE=215+*	TA-1	4.4	6	100	100	1500	201	35.2	33.7	32.0	30.2	28.2	25.7	22.7	17.7	-	-	-	-	
5	100 KE=215+	TV-1	5.2	7	100	100	1500	206	-	36.0	34.5	32.8	31.2	29.2	27.0	24.0	19.0	-	-	-	
6	100 KE-215+	TV-1	5.2	8	100	100	1800	188	-	-	37.0	36.0	34.7	33.3	31.6	29.7	27.2	24.4	20.0	-	

- Note:

 All pumps except 100 KE-215+, type TA-1 are ISI complied.

 Performance applicable to liquid of specific gravity 1 and viscosity as of water.

END-SUCTION PUMPS

FEATURES

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pump set for variable conditions.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

Design To Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a heat lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which provides ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

Highly Efficient & Flexible Design

Designed to run directly through pulley with engine / motor.

TECHNICAL SPECIFICATION

ead - Up to 52 Metres

Discharge Range - Up to 12 LPS

Power Rating - 0.25 to 7.5 kW (0.33 to 10 HP)

MATERIAL OF CONSTRUCTION

Impeller - Cast Iron

Delivery casing - Cast Iron

Pump shaft - Carbon Steel

- Irrigation in (horticulture & agriculture)
- Rural water supply
- Mounting on water tanker

		Power Rating		Pipe Size (mm)		Rated Speed	Impeller Diameter	er TOTAL HEAD IN METERS														
Sr. No.	Pump Model							6	7	8	9	10	11	12	13	14	15	16	17	18	19	
NO.		kW	HP	SUC.	DEL	(RPM)	(mm)	DISCHARGE IN LITRES PER SECOND														
1	KH-1	0.25	0.33	25	25	2900	80	2.0	1.6	0.8	-	-	-	-	-	-	-	-	-	-	-	
2	KH-1	0.37	0.5	25	25	2900	91	-	2.4	2.2	2.0	1.6	-	-	-	-	-	-	-	-		
3	KH-1	0.55	0.75	25	25	2900	99	-		2.8	2.6	2.4	2.2	1.6	0.4	-	-	-	-	-	-	
								15	16	17	18	19	20	21	22	23	24	25	26	27	28	
4	KH-3	2.2	3	40	30	2810	146	-	-	-	-	-	-	-	6.4	6.1	5.8	5.4	4.9	4.4	3.	
5	KH=4	1.5	2	40	40	2800	148	6.0	5.6	5.2	4.9	4.5	4.0	3.5	3.0	2.3	1.1	-	-	-	-	
6	KH-5	2.2	3	40	40	2810	149	-	-	-	-	-	-	-	-	6.4	6.0	5.4	4.7	3.7	-	
									32	34	36	38	40	42	44	46	48	50	52	54	56	
7	KH-6	3.7	5	50	40	2820	172	6.8	6.4	5.5	4.5	3.0	-	-	-	-	-	-	-	-	-	
8	KH-7	5.5	7.5	50	40	2840	197.5	-	8.5	8.3	8.2	8.0	7.6	7.2	6.6	6.0	5.2	4.0	1.0	-	-	
9	KH-12	7,5	10	65	50	2830	195	-	12.0	11,8	11,5	11,1	10,6	9.9	9.0	8.1	6.8	-	-	-	-	

Note:
■ Performance applicable to liquid of specific gravity 1 and viscosity as of water.

KHDT

END-SUCTION PUMPS

FEATURES

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pump set for variable conditions.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

Design To Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a heat lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which provides ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus ensuring consistent performance as concentricity is maintained.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

Highly Efficient & Flexible Design

Designed to run directly through pulley with engine / motor.

TECHNICAL SPECIFICATION

Head - Up to 104 Metres
Discharge Range - Up to 19.4 LPS

Power Rating - 3.7 to 15 kW (5 to 20 HP)

MATERIAL OF CONSTRUCTION

Impeller - Cast Iron
Delivery casing - Cast Iron
Pump shaft - Carbon Steel

- Irrigation in (horticulture & agriculture)
- Rural water supply
- Sprinkler

			PE	ERFOR	MANCE	CHART I	OR 'K	HDT+	' END	SUCT	ION P	UMPS	AT RA	TED S	PEED						
		Power Rating		Pipe Size		Rated	TOTAL HEAD IN METRES														
S. No.	PUMP MODEL	Power	Hating	(m	ım)	Speed	22	24	26	28	30	32	34	36	38	40	42	44	46	48	52
		kW	HP	SUC.	DEL.	(RPM)					DI	SCHAF	RGE IN	LITRE	S PER	SECO	ND				
1	KHDT - 544+	3.7	5.0	65	50	2870		7.2	7.0	6.7	6.4	6.1	5.7	5.3	4.9	4.4	3.7	-	-	-	-
2	KHDT - 844+	5.5	7.5	80	65	2900	13.0	12.7	12.2	11.8	11.3	10.9	10.3	9.8	9.2	8.5	7.8	7.0	5.5	-	-
3	KHDT - 1050+	7.5	10.0	80	65	2900	14.5	14.2	14.0	13.7	13.4	13.0	12.6	12.3	11.8	11.3	10.8	10.3	9.6	9.0	7.2
							32	34	38	42	46	50	54	58	62	66	70	74	78	82	86
4	KHDT - 568+	3.7	5.0	50	40	2870	-	4.4	4.1	3.8	3.5	3.0	2.6	2.0	1.0						-
5	KHDT - 864+	5.5	7.5	65	50	2900	7.7	7.5	7.1	6.6	6.2	5.6	5.0	4.2							-
6	KHDT - 1078+	7.5	10.0	65	50	2900	-	8.4	8.2	7.9	7.5	7.2	6.8	6.3	5.6	4.9	3.8				-
7	KHDT - 1580+	11.0	15.0	65	65	2880	-	-	-		-	10.8	10.3	9.7	9.1	8.4	7.7	7.0	6.1	5.0	3.5
8	KHDT - 2070+	15.0	20.0	80	65	2900	-	-	-	19.4	18.4	17.2	15.8	14.4	12.8	11.0	-	-	-		-
								54	60	62	66	70	74	78	82	86	90	94	98	102	104
9	KHDT - 1388+	9.3	12.5	65	50	2900	-	-	7.1	6.9	6.6	6.2	5.8	5.3	4.8	4.1	3.1	-	-		-
10	KHDT = 1598+	11.0	15.0	65	50	2880	-	-	-		-	-	7.1	6.7	6.4	6.0	5.6	5.0	4.4	3.5	2.6
11	KHDT - 2095+	15.0	20.0	65	65	2900	-	-	-	12.7	12.2	11.5	10.8	10.1	9.2	8.2	7.2	5.8	-		-

Note:
■ Performance applicable to liquid of specific gravity 1 and viscosity as of water.

SR

END-SUCTION PUMPS

FEATURES

Flatter Efficiency Curve

Minimum variations in efficiency during entire operating range increases the utility of pump set for variable conditions.

Automatic Air Release

Automatically releases air when the pump starts ensuring swifter and smoother operations, thus eliminating the necessity of operating air release cock.

Design To Prevent Overloading

Lesser chances of motor burning as it does not get overloaded even if the pump is operated at a heat lower than recommended, thus ensuring substantial cost saving due to low maintenance and breakdown.

Replaceable Wearing Parts

All wearing parts within the pumps are easily accessible and replaceable which provides ease of maintenance thereby extending the life of the pump.

Dynamically Balanced Rotating Parts

Minimum vibration protect components from damage during the operation, thus • ensuring consistent performance as concentricity is maintained.

Easy Maintainable Designs

Easy maintainable design and better interchangeability of components so that pump can be serviced even at remote locations by semi-skilled technicians.

Highly Efficient & Flexible Design

Designed to run directly through pulley with engine / motor.

TECHNICAL SPECIFICATION

- Up to 136 Metres Head

Discharge Range - Up to 14.8 LPM

Power Rating - 5.9 to 19 kW (8 to 26 HP) with Engine

3.7 to 9.3 kW (5 to 12.5 HP)

MATERIAL OF CONSTRUCTION

- Cast Iron Impeller Delivery casing - Cast Iron - Carbon Steel Pump shaft

- Irrigation in (horticulture & agriculture)
- Rural water supply
- Mines dewatering
- Firefighting

	PERFORMANCE CHART FOR 'SR' SERIES,ENGINE COUPLED END SUCTION PUMPS AT RATED SPEED																			
		Power Rating		Pipe Size (mm)		Rated	TOTAL HEAD IN METERS													
S. No.	PUMP MODEL					SPEED	50	60	70	80	90	95	100	110	120	130	136			
		kW	HP	SUC.	DEL.	(RPM)	DISCHARGE IN LITRES PER SECOND													
1	8SR7	5.9	8	65	50	1800	5.4	4.8	4.2	3.5	2.5	1.9	1.0	·	i	-	-			
2	16SR6	11.8	16	80	65	1800	12.0	10.7	9.5	8.0	6.2	5.0	-	٠	-	-	-			
3	26SR9*	19	26	80	65	1800	14.8	13.9	13.1	12.4	11.5	11.1	10.6	9.5	8.5	7.0	5.8			

	PERFORMANCE CHART FOR 'SR' SERIES, MOTOR COUPLED END SUCTION PUMPS AT RATED SPEED																		
		Bower	Rating	Dina Ci	(mm)	Rated	TOTAL HEAD IN METERS												
S. No.	PUMP MODEL	rower nating		Pipe Size (mm)		SPEED	30	35	40	50	60	70	80	90					
		kW	HP	SUC.	DEL.	(RPM)		DIS	CHARG	E IN LIT	RES PE	R SECO	DND						
1	8SR7	3.7	5	65	50	1450	4.5	4.2	3.8	3.0	1.8	-	-	-					
2	16SR6	7.5	10	80	65	1450	ı	9.3	8.5	6.9	4.6	ı	-	-					
3	26SR9*	9.3	12.5	80	65	1450	-	11.5	11.1	10.1	9.0	7.8	6.4	3.8					

Note:

* Also Available in reverse rotation as 26SR9R (Direction anti-clockwise when viewed from non-driving end).

Enriching Lives

KIRLOSKAR BROTHERS LIMITED

Established 1888 A Kirloskar Group Company

Registered Office & Global Headquarters:

"Yamuna", Survey No. 98/(3 to7), Plot No. 3, Baner, Pune - 411 045, Maharashtra, India Tel: +91(20)27214444, Email: marketing@kbl.co.in, Website: www.kirloskarpumps.com

FOR SERVICE OF PUMPS

Follow Us On: fin [6]

